ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 233-243

Advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz

E.V. Zabolotskikh 1 , E.A. Balashova 1 , B. Chapron 2, 1 
1 Russian State Hydrometeorological University, Saint Petersburg, Russia
2 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 06.02.2019
DOI: 10.21046/2070-7401-2019-16-4-233-243
An advanced method for sea ice concentration retrieval from satellite microwave radiometer measurements at frequencies near 90 GHz is presented. The method is based on the new approach for the determination of the tie points ― the polarization differences (PD) of the brightness temperatures (TB) of the ocean-atmosphere system (PDW) and the sea ice-atmosphere system microwave radiation (PDSI). The approach is based on the results of physical modeling of the sea ice – ocean – atmosphere TB and the analysis of the measurements of the Advanced Microwave Scanning Radiometer 2 (AMSR2) in the Arctic region. The TB simulation is carried out for the whole ranges of the Arctic atmospheric conditions and sea ice and ocean parameters. The method of sea ice concentration (SIC) retrieval uses PD in measurements on the vertical and horizontal polarization at the frequency of 89 GHz and the values of tie points over the ice-free sea surface and over the sea ice. The range of PDW and PDSI variability is analyzed basing on the AMSR2 measurement data and the results of TB model calculations. The advancement of the method as compared to those traditionally used is the use of variable PDW values depending on how far from the sea ice edge is the pixel for which C is estimated. The method was tested using the maps of the Norwegian Meteorological Institute (NMI) for the Northeren, Kara and Barents seas. The error of SIC estimation, calculated using the new method, turned out to be 4.2 %, which is almost two times lower than the error of the standard product of the University of Bremen, calculated using the same verification data set.
Keywords: sea ice, sea ice concentration, Arctic, satellite passive microwave radiometers, brightness temperatures, AMSR2, polarization difference, physical modeling
Full text

References:

  1. Smirnov V. G., Sputnikovye metody opredeleniya kharakteristik ledyanogo pokrova morei (Satellite methods for determining the characteristics of the sea ice cover), Saint Petersburg: AANII, 2011, 240 p.
  2. Tikhonov V. V., Repina I. A., Raev M. D., Sharkov E. A., Boyarskiy D. A., Komarova N. Yu., Novyi algoritm vosstanovleniya splochennosti morskogo ledyanogo pokrova po dannym passivnogo mikrovolnovogo zondirovaniya (A new algorithm for sea ice concentration retrieval from passive microwave remote sensing), Issledovanie Zemli iz kosmosa, 2014, No. 2, pp. 35–43.
  3. Tikhonov V. V., Raev M. D., Sharkov E. A., Boyarskii D. A., Repina I. A., Komarova N. Yu., Sputnikovaya mikrovolnovaya radiometriya morskogo l’da polyarnykh regionov: Obzor (Satellite microwave radiometry of the polar region sea ice. Review), Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 65–84.
  4. Shalina E. V., Bobylev L. P., Izmenenie ledovykh uslovii v Arktike soglasno sputnikovym nablyudeniyam (Changes in the Arctic sea ice conditions by satellite observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 28–41.
  5. Andersen S., Tonboe R., Kaleschke L., Heygster G., Pedersen L. T., Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophysical Research, 2007, Vol. 112, No. C8, DOI: 10.1029/2006JC003543.
  6. Cavalieri D. J., Germain K. M. S., Swift C. T., Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I, J. Glaciology, 1995, Vol. 41, No. 139, pp. 455–464.
  7. Comiso J. C., Enhanced Sea ice concentrations and ice extents from AMSR-E data, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 199–215.
  8. Comiso J. C., Sea Ice Concentration and Extent, Encyclopedia of Remote Sensing, E. G. Njoku (ed.), New York: Springer, 2014, pp. 727–743.
  9. Comiso J. C., Meier W. N., Gersten R., Variability and trends in the Arctic Sea ice cover: Results from different techniques, J. Geophysical Research: Oceans, 2017, Vol. 122, No. 8, pp. 6883–6900.
  10. Ivanova N., Johannessen O. M., Pedersen L. T., Tonboe R. T., Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms, IEEE Trans. Geoscience and Remote Sensing, 2014, Vol. 52, No. 11, pp. 7233–7246.
  11. Ivanova N., Pedersen L. T., Tonboe R. T., Kern S., Heygster G., Lavergne T., Sørensen A., Saldo R., Dybkjær G., Brucker L., Shokr M., Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges, Cryosphere, 2015, Vol. 9, pp. 1797–1817.
  12. Kaleschke L., Lüpkes C., Vihma T., Haarpaintner J., Bochert A., Hartmann J., Heygster G., SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis, Canadian J. Remote Sensing, 2001, Vol. 27, No. 5, pp. 526–537.
  13. Kern S., Kaleschke L., Clausi D. A., A comparison of two 85-GHz SSM/I ice concentration algorithms with AVHRR and ERS-2 SAR imagery, IEEE Trans. Geoscience Remote Sensing, 2003, Vol. 41, No. 10, pp. 2294–2306.
  14. Markus T., Cavalieri D. J., An enhancement of the NASA Team sea ice algorithm, IEEE Trans. Geoscience Remote Sensing, 2000, Vol. 38, No. 3, pp. 1387–1398.
  15. Meier W. N., Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas, IEEE Trans. Geoscience Remote Sensing, 2005, Vol. 43, No. 6, pp. 1324–1337.
  16. Spreen G., Kaleschke L., Heygster G., Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophysical Rearch: Oceans 1978–2012, 2008, Vol. 113, No. C2, DOI: 10.1029/2005JC003384.
  17. Svendsen E., Matzler C., Grenfell T. C., A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Intern. J. Remote Sensing, 1987, Vol. 8, No. 10, pp. 1479–1487.
  18. Teleti P. R., Luis A. J., Sea Ice Observations in Polar Regions: Evolution of Technologies in Remote Sensing, Intern. J. Geosciences, 2013, Vol. 4, No. 7, pp. 1031–1050.
  19. Zabolotskikh E. V., Chapron B. (2018a), New Geophysical Model Function for Ocean Emissivity at 89 GHz Over Arctic Waters, IEEE Geoscience Remote Sensing Letters, 2018, DOI: 10.1109/LGRS.2018.2876731.
  20. Zabolotskikh E. V., Chapron B. (2018b), Atmospheric Integrated Water Parameters in the Arctic: Seasonal Variability and Influence on the AMSR2 Measured Microwave Radiation of the Sea Ice-Atmosphere System, Proc. IGARSS’2018, 2018, pp. 3035–3038.
  21. Zabolotskikh E. V., Mitnik L. M., Chapron B., An Updated Geophysical Model for AMSR-E and SSMIS Brightness Temperature Simulations over Oceans, Remote Sensing, 2014, Vol. 6, No. 3, pp. 2317–2342.