Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 86-101
Tree species classification in Samara Region using Sentinel-2 remote sensing images and forest inventory data
A. Yu. Denisova
1 , L. M. Kavelenova
1 , E. S. Korchikov
1 , N. V. Prokhorova
1 , D. A. Terentieva
1 , V. A. Fedoseev
1, 2 1 Samara National Research University, Samara, Russia
2 Image Processing Systems Institute, Branch of Federal Scientific Research Centre “Crystallography and Photonics” RAS, Samara, Russia
Accepted: 17.05.2019
DOI: 10.21046/2070-7401-2019-16-4-86-101
Tree species information is required in many ecological management applications, for example, for conservation status assignment or human activity management for particular forest sites. However, governmental forest inventory is very expensive. Therefore, the inventory is very slowly updated, approximately once a decade. That is why more operative and independent data sources, such as remote sensing systems, are required to refine latest forest inventory data. This paper presents an investigation on tree species classification using seasonal Sentinel-2 data and the latest forest inventory data. The advantage of Sentinel-2 satellites for solving this problem lies in short revisiting time for the territory and large field of view that is important for large territory analysis. The forest inventory data were used for training and classification with further ground survey of misclassified regions. The classification was organized as a comprehensive supervised spectral-spatial classification procedure based on combination of different spectral and spatial image processing algorithms. The paper addresses the issues of optimal image data selection and processing, classification procedure configuration and training method. The studies were carried out using the territory of the Krasnosamarskoe forestry in Samara Region. For training and verification of classifiers, latest available forest inventory data (2013–2014) and seasonal Sentinel-2 data (2018) were used. The experiments showed that proper image data selection and classification procedure configuration result in high classification accuracy (about 0.82) for the control fragment of the territory. Moreover, the performed ground survey partially confirmed that classification errors are related to the changes in tree species concentration and age that were not taken into account in forestry inventory data. Thus, Sentinel-2 data are practically valuable for forest inventory data refinement.
Keywords: tree species classification, Sentinel-2, spatial classification, forest inventory data, EM clustering, SVM
Full textReferences:
- Bartalev S. A., Razrabotka metodov otsenki sostoyaniya i dinamiki lesov na osnove dannykh sputnikovykh nablyudenii: Avtoref. dis. dokt. tekhn. nauk (Developing of methods for forest state assessment and forest dynamics based on satellite observation data. Ext. abstract Doct. tech. sci. thesis), Moscow: IKI RAN, 2007, 48 p.
- Bartalev S. A., Zhirin V. M., Ershov D. V., Sravnitel’nyi analiz dannykh sputnikovykh sistem “Kosmos-1939”, SPOT i “Landsat-TM” pri izuchenii boreal’nykh lesov (The comparative analysis of “Kosmos-1939”, SPOT and Landsat-TM satellite systems data for boreal forests study), Issledovanie Zemli iz kosmosa, 1995, Vol. 1, pp. 101–114.
- Borzov S. M., Potaturkin O. I., Klassifikatsiya tipov rastitel’nogo pokrova po giperspektral’nym dannym distantsionnogo zondirovaniya Zemli (Vegetative cover type classification using hyperspectral remote sensing), Vestnik NGU. Seriya: Informatsionnye tekhnologii, 2014, Vol. 12, No. 4, pp. 13–22.
- Galeeva L. P., Monitoring lesnykh zemel’ (Monitoring of forest lands), Novosibirsk: Izd. NGAU “Zolotoi kolos”, 2016, 147 p.
- State report “On the state and protection of the environment of the Russian Federation in 2016”, Moscow: Minprirody of Russia, NIA-Priroda, 2017, 760 p. (In Russ).
- Zharko V. O., Bartalev S. A., Otsenka raspoznavaemosti drevesnykh porod lesa na osnove sputnikovykh dannykh o sezonnykh izmeneniyakh ikh spektral’no-otrazhatel’nykh kharakteristik (Forest tree species recognizability assessment based on satellite data on their spectral reflectance seasonal changes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 159–170.
- Zimichev E. A., Kazanskiy N. L., Serafimovich P. G., Prostranstvennaya klassifikatsiya giperspektral’nykh izobrazhenii s ispol’zovaniem metoda klasterizatsii k-means++ (Spectral-spatial classification with k means++ particional clustering), Computer optics, 2014, Vol. 38, No. 2, pp. 281–286.
- Kedrov A. V., Tarasov A. V., Klassifikatsiya lesnoi rastitel’nosti metodom neironnykh setei (Classification forest vegetation with neural network), Vestnik PNIPU, 2017, Vol. 22, pp. 44–54.
- Kuznetsov A. V., Myasnikov V. V., Sravnenie algoritmov upravlyaemoi poelementnoi klassifikatsii giperspektral’nykh izobrazhenii (A comparison of algorithms for supervised classification using hyperspectral data), Computer optics, 2014, Vol. 38, No. 3, pp. 494–502.
- Kurbanov E. A., Vorob’ev O. N., Nezamaev S. A., Gubaev A. V., Lezhnin S. A., Polevshchikova Yu. A., Tematicheskoe kartirovanie i stratifikatsiya lesov mariiskogo Zavolzh’ya po sputnikovym snimkam Landsat (Thematic mapping and stratification of forests in middle zavolsgie by landsat satelite images), Vestnik Povolzhskogo gosudarstvennogo tekhnologicheckogo universiteta, 2013, Vol. 3, No. 19, pp. 82–92.
- Lyubimov A. V., Selivanov A. A., Kryuchkov A. N., Nomalungelo K. N., Tkhin Ch. Kh., Saksonov S. V., Analiz priznakov deshifrovaniya taksatsionnykh pokazatelei lesov s ispol’zovaniem veroyatnostnykh metodov (Analyzes of the photointerpretation parameters for the forest inventory on the probability methods), Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, Vol. 20, No. 3, pp. 85–90.
- Mal’kov Yu. G., Zakamskii V. A., Monitoring lesnykh ekosistem (Monitoring of forest ecosystems), Yoshkar-Ola: Mari State Technical University, 2006, 212 p.
- Perepechina Yu. I., Glushenkov O. I., Korsikov R. S., Uchet i otsenka lesov, voznikshikh na sel’skokhozyaistvennykh zemlyakh s ispol’zovaniem dannykh distantsionnogo zondirovaniya Zemli (Forest Inventory and Assessment in the Agricultural Lands Using the Earth Remote Sensing Data), Lesnoi zhurnal, 2016, No. 4, pp. 71–80.
- Federal Forestry Agency of the Russian Federation: Letter No. MG-1-17-6/287, Date 29.11.1995.
- Tarankov V. I., Monitoring lesnykh ekosistem (Monitoring of forest ecosystems), Saint Petersburg: Lan’, 2006, 299 p.
- Trots V. B., Valiullina A. T., Moiseeva I. S., Taksatsiya lesa (Forest inventories), Kinel’: RITs SGSKhA, 2015, 392 p.
- Arthur D., Vassilvitskii S., k-means++: The Advantages of Careful Seeding, Proc. 18th Annual ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 1027–1035.
- Bavrina A., Denisova A., Kavelenova L., Korchikov E., Kuzovenko O., Prokhorova N., Terentyeva D., Fedoseev V., Some problems of regional reference plots system for ground support of remote sensing materials processing, Information Technologies in the Research of Biodiversity: Springer Proc. Earth and Environmental Sciences, 2018, pp. 131–143.
- Corbane C., Lang S., Pipkins K., Alleaume S., Deshayes M., García Millán V. E., Michael F., Remote sensing for mapping natural habitats and their conservation status ― New opportunities and challenges, Intern. J. Applied Earth Observation and Geoinformation, 2015, Vol. 37, pp. 7–16.
- Cristianini N., Shawe-Taylor J., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000, 216 p.
- Dalponte M., Ørka H. O., Ene L. T., Gobakken T., Næsset E., Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data, Remote Sensing of Environment, 2014, Vol. 140, pp. 306–317.
- Denisova A. Y., Sergeyev V. V., EM clustering algorithm modification using multivariate hierarchical histogram in the case of undefined cluster number, Proc. SPIE, 2018, Vol. 10806, p. 108064H.
- Drusch M., Del Bello U., Carlier S., Colin O., Fernandez V., Gascon F., Bargellini P., Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services, Remote Sensing of Environment, 2012, Vol. 120, p. 25–36.
- Fedoseev V., Hyperspectral satellite image classification using small training data from its samples, J. Physics: Conf. Series, 2018, Vol. 1096, p. 012042.
- Immitzer M., Vuolo F., Atzberger C., First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe, Remote Sensing, 2016, Vol. 8, No. 3, p. 166.
- Karlson M., Ostwald M., Reese H., Sanou J., Tankoano B., Mattsson E., Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using Landsat 8 and Random Forest, Remote Sensing, 2015, Vol. 7, No. 8, pp. 10017–10041.
- Puliti S., Ørka H., Gobakken T., Næsset E., Inventory of Small Forest Areas Using an Unmanned Aerial System, Remote Sensing, 2015, Vol. 7, No. 8, pp. 9632–9654.
- Waring R. H., Coops N. C., Fan W., Nightingale J. M., MODIS enhanced vegetation index predicts tree species richness across forested ecoregions in the contiguous U. S.A., Remote Sensing of Environment, 2006, Vol. 103, No. 2, pp. 218–226.
- Xiao X., Boles S., Liu J., Zhuang D., Liu M., Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 vegetation sensor data, Remote Sensing of Environment, 2002, Vol. 82, No. 2–3, pp. 335–348.
- Zhang T., Su J., Liu C., Chen W.-H., Liu H., Liu G., Band selection in Sentinel-2 satellite for agriculture applications, 23rd Intern. Conf. Automation and Computing (ICAC), Huddersfield, United Kingdom: IEEE, 2017, pp. 1–6.