Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 273-281
Winter cyclones in the geomagnetic polar cap
N.I. Izhovkina
1 , S.N. Artekha
2 , N.S. Erokhin
2, 3 , L.A. Mikhailovskaya
2 1 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Peoples' Friendship University of Russia, Moscow, Russia
Accepted: 29.03.2019
DOI: 10.21046/2070-7401-2019-16-4-273-281
The atmosphere of the Earth is constantly affected by various ionizing sources. In the high-latitude troposphere for the region of the geomagnetic polar cap, in winter period, the excitation of local cyclonic structures is observed accompanied with ice storms, with invasions into middle and even subtropical latitudes. The time of excitation of such cyclones is 15–25 hours. The paper shows that the localization of polar cyclones is not random. The region of the polar cap is associated with geomagnetic field lines extended into the tail of the Earth’s magnetosphere. This area is open for the penetration of cosmic rays into the atmosphere of the Earth. The ionization of aerosol in the stratosphere and the upper troposphere by precipitating particles of cosmic rays enhances the vortex activity of the atmosphere. In the atmospheric MHD-generator with inhomogeneous heating of the mosaic cellular distributions of ionized aerosol, plasma vortices are formed and electric fields orthogonal to the geomagnetic field are enforced. It is shown in the work that aperiodic electrostatic perturbations, which play a significant role in the genesis of vortices, are stochastically excited in plasma inhomogeneities. The important role of the aerosol impurity is manifested in the generation of plasma vortices and the accumulation of energy and mass in the atmosphere by vortices during condensation of moisture.
Keywords: aerosol plasma, the geomagnetic field, vortex activity of the atmosphere, polar winter cyclones
Full textReferences:
- Gossard E. E., Khuk U. K., Volny v atmosfere (Waves in the atmosphere), Moscow: Mir, 1978, 532 p.
- Dolzhanskii F. V., Lektsii po geofizicheskoi gidrodinamike (Lectures on geophysical hydrodynamics), Moscow: IVM RAN, 2006, 378 p.
- Izhovkina N. I., Elektrostaticheskie kolebaniya v statsionarnykh i nestatsionarnykh plazmennykh neodnorodnostyakh: Preprint No. 2(949) (Electrostatic oscillations in stationary and non-stationary plasma inhomogeneities: Preprint No. 2(949)), Moscow: IZMIRAN, 1991, 7 p.
- Izhovkina N. I., Plazmennye vikhri v ionosfere i atmosfere (Plasma vortices in the ionosphere and atmosphere), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 817–828.
- Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Spiral’nye tokovye struktury v aerozol’noi atmosfernoi plazme (Spiral flow structures in the aerosol atmospheric plasma), Inzhenernaya fizika, 2016, No. 7, pp. 57–68.
- Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Vliyanie solnechnogo i galakticheskogo kosmicheskogo izlucheniya na atmosfernye vikhrevye struktury (The impact of solar and galactic cosmic rays on atmospheric vortex structures), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 209–220.
- Mikhailovskii A. V., Teoriya plazmennykh neustoichivostei. T. 2: Neustoichivosti neodnorodnoi plazmy (Theory of plasma instabilities. Vol. 2: Instability of an inhomogeneous plasma), Moscow: Atomizdat, 1977, 312 p.
- Nezlin M. V., Chernikov G. P., Analogiya dreifovykh vikhrei v plazme i geofizicheskoi gidrodinamike (Analogy of drift vortices in plasmas and geophysical hydrodynamics), Fizika plazmy, 1995, Vol. 21, No. 11, pp. 975–999.
- Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Interaction of atmospheric plasma vortices, Pure and Applied Geophysics, 2016, Vol. 173, No. 8, pp. 2945–2957.
- Shumilov O. I., Vashenyuk E. V., Henriksen K., Quasi-drift effects of high-energy solar cosmic rays in the magnetosphere, J. Geophysical Research, 1993, Vol. 98, No. A10, pp. 17423–17427.