ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 256-262

A study of atmospheric vortex streets formation using satellite observations

A.V. Kazansky 1 , M.G. Aleksanina 1, 2 
1 Institute of Automation and Control Processes FEB RAS, Vladivostok, Russia
2 Far Eastern Federal University, Vladivostok, Russia
Accepted: 17.05.2019
DOI: 10.21046/2070-7401-2019-16-4-256-262
This work is dedicated to a study of the formation mechanism of atmospheric vortex streets (AVS) ­using satellite observations. The status of current research is briefly described and a conclusion is drawn about the absence of understanding of this mechanism in contemporary literature. The main disadvantage consists of a lack of comprehension of the leading role of centripetal acceleration in the process of AVS formation. It is shown that centripetal acceleration, which is a necessary attribute of any vortex, appears in the boundary layer flowing around a curved surface of a bluff body and it is supported by balancing with the transverse pressure gradient. Based on the example of the pair of satellite images NOAA-15 and NOAA-18 past the Jeju Island in January 2015, with an interval of 30 minutes, the calculation of the dynamic parameters of the process of AVS formation (velocity of incident flow, drift speed of vortices, orbital velocity, time and periodicity of AVS formation) is carried out. It has been possible to trace the initial stage of AVS formation and to show that they are formed as a result of shift boundary layer detachment, and the centripetal acceleration which is present at the moment of separation, emerges as the driving mechanism. This confirms the theory proposed in this work.
Keywords: atmospheric vortex streets, formation mechanism, centripetal acceleration, dynamic analysis of satellite images
Full text


  1. Aleksanin A. I., Aleksanina M. G., Karnatskii A. Yu., Avtomaticheskii raschet skorosteii poverkhnostnykh techenii okeana po posledovatel’nosti sputnikovykh izobrazhenii (Automatic computation of sea surface velocities on a sequence of satellite images), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 2, pp. 131–142.
  2. Belyaev E. N., Chervakov V. V., Matematicheskoe modelirovanie ZhRD (Mathematical modeling of liquid propellant rocket engines), Moscow: MAI, 2009, 278 p.
  3. Katamanov S. N., Tochnaya geograficheskaya privyazka izobrazhenii AVHRR/NOAA bez repernykh to­chek (Accurate NOAA/AVHRR image navigation without ground control points), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 78–91.
  4. Kochin N. E., Kibel I. A., Roze N. V., Teoreticheskaya gidromekhanika (Theoretical fluid mechanics), Moscow: Fizmatlit, 1963, Pt. 1, 583 p.
  5. Levin V. A., Aleksanin A. I., Aleksanina M. G., D’yakov S. E., Nedoluzhko I. V., Fomin E. V., Razrabotka tekhnologii sputnikovogo monitoringa okruzhayushchei sredy po dannym meteorologicheskikh sputnikov (Development of technologies for satellite environmental monitoring based on meteorological satellite data), Otkrytoe obrazovanie, 2010, No. 5, pp. 41–49.
  6. Caldeira R. M., Tomé R., Wake response to an ocean-feedback mechanism: Madeira island case study, Boundary-Layer Meteorology, 2013, Vol. 5, pp. 1–18.
  7. Chopra K., Hubert L., Mesoscale eddies in wake of islands, J. Atmospheric Sciences, 1965, Vol. 22, No. 6, pp. 652–657.
  8. Etling D., On atmospheric vortex streets in the wake of large islands, Meteorology and Atmospheric Physics, 1989, Vol. 41, pp. 157–164.
  9. Hubert L., Krueger A., Satellite pictures of mesoscale eddies, Monthly Weather Review, 1962, Vol. 90, No. 11, pp. 457–463.
  10. Ito J., Niino H., Atmospheric Kármán vortex shedding from Jeju Island, East China Sea: A numerical study, Monthly Weather Review, 2016, Vol. 144, pp. 139–148.
  11. Li X., Zheng W., Zou C., Pichel W., A SAR observation and numerical study on ocean surface imprints of atmospheric vortex streets, Sensors, 2008, Vol. 8, No. 5, pp. 3321–3334.
  12. Nunalee C. G., Basu S., On the periodicity of atmospheric von Kármán vortex streets, Environmental Fluid Mechanics, 2014, Vol. 14, pp. 1335–1355.
  13. Powers J. M., Lecture notes on intermediate fluid mechanics, Notre Dame, Indiana, USA: University of Notre Dame, 2008, 340 p.
  14. Roshko A., Perspectives on bluff body aerodynamics, Wind Engineering and Industrial Aerodynamics, 1993, Vol. 49, pp. 70–100.
  15. Wu J. Z., Ma H. Y., Zhou M. D., Vorticity and vortex dynamics, Berlin –Heidelberg – New York: Springer, 2006, 13 p.
  16. Young G. S., Zawislak  J., An observational study of vortex spacing in island wake vortex streets, Monthly Weather Review, 2006, Vol. 134, pp. 2285–2294.