ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 111-123

Seasonal dynamics of the agroecosystems green vegetation fraction derived from satellite data

E.A. Terekhin 1 
1 Belgorod State National Research University, Belgorod, Russia
Accepted: 30.04.2019
DOI: 10.21046/2070-7401-2019-16-4-111-123
Fraction of green vegetation cover is one of the important parameters determining the vegetation state. This paper presents the results of green vegetation fraction estimation for agroecosystems typical of south forest-steppe zone using both Sentinel and MODIS remote sensing data. Study objects are agrolandscapes of the south of Central Chernozem Region of Russia. The assessment of the relationship between the actual and calculated green vegetation fraction values has been made using over 200 measurements obtained during the field research. High correlation between the actual green vegetation fraction values and its values calculated from MODIS and Sentinel-2 MSI data was established. The variability of green vegetation fraction within the contours of crop areas was studied using Sentinel data for different types of crops. Seasonal dynamics of the fraction of green vegetation cover was calculated for main regional crop types using NDVI values: barley, winter wheat, sunflower, soybean, corn, sunflower and perennial grasses. It was found that the seasonal dynamics of calculated fraction of green vegetation corresponds to the main phenophases of vegetation types in the south of forest-steppe.
Keywords: green vegetation fraction, green phytomass, vegetation cover, agroecosystems, remote sensing, vegetation indices, MODIS, Sentinel
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p.
  2. Savin I. Yu., Dokukin P. A., Vernyuk Yu. I., Zhogolev A. V., O vliyanii zasorennosti na NDVI posevov yarovogo yachmenya, opredelyaemyi po sputnikovym dannym MODIS (About the influence of weeds on spring barley NDVI determined from MODIS satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 185–195.
  3. Terekhin E. A., Vliyanie proektivnogo pokrytiya rastitel’nosti posevnykh ploshchadei na ee spektral’no-otrazhatel’nye svoistva (Influence of crop areas vegetation cover fraction on their spectral reflectivity properties), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 61–71.
  4. Baret F., Clevers J. G. P. W., Steven M. D., The Robustness of Canopy Gap Fraction Estimates from Red and Near-Infrared Reflectances: A Comparison of Approaches, Remote Sensing of Environment, 1995, Vol. 54, pp. 141–151.
  5. Camacho-De Coca F., García-Haro F. J., Gilabert M. A., Meliá J., Vegetation cover seasonal changes assessment from TM imagery in a semi-arid landscape, Intern. J. Remote Sensing, 2004, Vol. 25, No. 17, pp. 3451–3476.
  6. Didan K., MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set], NASA EOSDIS LP DAAC, 2015, DOI: 10.5067/MODIS/MOD13Q1.006.
  7. Gutman G., Ignatov A., The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models, Intern. J. Remote Sensing, 1998, Vol. 19, No. 8, pp. 1533–1543.
  8. Imukova K., Ingwersen J., Streck T., Determining the spatial and temporal dynamics of the green vegetation fraction of croplands using high-resolution RapidEye satellite, Agricultural and Forest Meteorology, 2015, Vol. 206, No. Supplement C, pp. 113–123.
  9. Jia K., Liang S., Liu S., Li Y., Xiao Z., Yao Y., Jiang B., Zhao X., Wang X., Xu S., Cui J., Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks From MODIS Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 2015, Vol. 53, pp. 4787–4796.
  10. Jiang Z., Huete A., Chen J., Chen Y., Li J., Yan G., Zhang X., Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction, Remote Sensing of Environment, 2006, Vol. 101, pp. 366–378.
  11. Jiménez-Muñoz J. C., Sobrino J. A., Plaza A., Guanter L., Moreno J., Martinez P., Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area, Sensors, 2009, Vol. 9, No. 2, pp. 768–793.
  12. Kallel A., Le Hégarat-Mascle S., Ottlé C., Hubert-Moy L., Determination of vegetation cover fraction by inversion of a four-parameter model based on isoline parametrization, Remote Sensing of Environment, 2007, Vol. 111, pp. 553–566.
  13. Purevdorj T., Tateishi R., Ishiyama T., Honda Y., Relationships between percent vegetation cover and vegetation indices, Intern. J. Remote Sensing, 1998, Vol. 19, No. 18, pp. 3519–3535.
  14. Shabanov N., Gastellu-Etchegorry J.-P., The stochastic Beer–Lambert–Bouguer law for discontinuous vegetation canopies, J. Quantitative Spectroscopy and Radiative Transfer, 2018, Vol. 214, pp. 18–32.
  15. Wang Y., Woodcock C. E., Buermann W., Stenberg P., Voipio P., Smolander H., Häme T., Tian Y., Hu J., Knyazikhin Y., Myneni R. B., Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland, Remote Sensing of Environment, 2004, Vol. 91, No. 1, pp. 114–127.
  16. Zhang X., Yan G., Li Q., Li Z.-L., Wan H., Guo Z., Evaluating the fraction of vegetation cover based on NDVI spatial scale correction model, Intern. J. Remote Sensing, 2006, Vol. 27, No. 24, pp. 5359–5372.