ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 137-149

Combined approach to burned area mapping in Eastern Siberia using AVHRR/NOAA data (1984–2016)

O.A. Tomshin 1, 2 , V.S. Solovyev 1, 2 
1 Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia
2 M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
Accepted: 04.04.2019
DOI: 10.21046/2070-7401-2019-16-4-137-149
The paper presents the results of burned area (BA) mapping in Eastern Siberian forests using LTDR project data. A combined approach that includes expert assessment of burned areas detected by thre­shold algorithm is proposed. Comparison with MODIS (MCD64A1 C6, 2001–2016) and GFED-4 (1995–2016) data shows good agreement with correlation coefficients of ~0.95, ~0.87 and average relative errors 16.5% and 40.6 %, respectively. Analysis of the spatial distribution of BA shows that in the territory west of the Baikal the quality of BA detection is somewhat degraded. This decrease is due to generally smaller size of BA in this region and, given lower resolution of the LTDR data as compared to the MODIS data, the probability of their detection is lower. The combined approach shows that in some regions that have a complex landscape MODIS data often provide unreliable results. Annual maps of BA in Eastern Siberia are constructed for 1984–2016. It is concluded that the use of a combined approach based on expert assessment with additional conditions provides a higher (compared to fully automated algorithms) level of confidence in BA detection, especially over areas with mountai­nous terrain, complex ground surface texture, vegetation type and/or over areas located at high latitudes, where the occurrence of wildfires is extremely unlikely.
Keywords: burned area, forest fires, remote sensing
Full text

References:

  1. Bartalev S. A., Loupian E. A., Stytsenko F. V., Panova O. Yu., Efremov V. Yu., Ekspress-kartografirovanie povrezhdenii lesov Rossii pozharami po sputnikovym dannym Landsat (Rapid mapping of forest burnt areas over Russia using Landsat data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 1, pp. 9–20.
  2. Ginzburg A. S., Gubanova D. P., Minashkin V. M., Vliyanie estestvennykh i antropogennykh aerozolei na global’nyi i regional’nyi klimat (The impact of natural and anthropogenic aerosols on the global and regional climate), Rossiiskii khimicheskii zhurnal, 2008, Vol. LII, No. 5, pp. 112–119.
  3. Ershov D. V., Kovganko K. A., Sochilova E. N., GIS-tekhnologiya otsenki pirogennykh emissii ugleroda po dannym Terra-Modis i gosudarstvennogo ucheta lesov (GIS technology for estimating pyrogenic carbon emissions from Terra-Modis data and state forest inventory), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 6, No. 2, pp. 365–372.
  4. Zamolodchikov D., Kraev G., Vliyanie izmenenii klimata na lesa Rossii: zafiksirovannye vozdeistviya i prognoznye otsenki (Impact of climate change on Russia’s forests: recorded impacts and predictive estimates), Ustoichivoe lesopol’zovanie, 2016, No. 4(48), pp. 23–31.
  5. Kondrat’ev K. Ya., Grigor’ev A. A., Lesnye pozhary kak komponent prirodnoi ekodinamiki (Forest fires as a component of natural ecodynamics), Optika atmosfery i okeana, 2004, Vol. 17, No. 4, pp. 279–292.
  6. Lytkina L. P., Mironova S. I., Poslepozharnaya suktsessiya v lesakh kriolitozony (na primere Tsentral’noi Yakutii) (Post-fire succession in the forests of the permafrost zone (on example of Central Yakutia)), Ekologiya, 2009, No. 3, pp. 168–173.
  7. Natsional’nyi atlas Rossii, V 4 t., T. 2, Priroda. Ekologiya (National Atlas of Russia, Vol. 2: Nature. Ecology), Moscow: PKO “Kartografiya”, 2007, 496 p.
  8. Solovyev V. S., Budishchev A. A., Vozmushcheniya aerozol’noi opticheskoi tolshchiny atmosfery, vyzvannye lesnymi pozharami v Yakutii (Disturbances of aerosol optical thickness of atmosphere caused by forest fires in Yakutia), Optika atmosfery i okeana, 2010, Vol. 23, No. 7, pp. 626–629.
  9. Solovyev V. S., Kozlov V. I., Mullayarov V. A., Distantsionnyi monitoring lesnykh pozharov i groz v Yakutii (Remote monitoring of forest fires and thunderstorms in Yakutia), Yakutsk: YaNTs SO RAN, 2009, 108 p.
  10. Tomshin O. A., Solovyev V. S., Issledovanie krupnomasshtabnykh neodnorodnostei aerozol’nykh polei, vyzvannykh lesnymi pozharami v Sibiri (Studying of large-scale inhomogeneities of aerosol fields caused by forest fires in Siberia), Optika atmosfery i okeana, 2016, Vol. 29, No. 7, pp. 598–602.
  11. Tomshin O. A., Solovyev V. S., Osobennosti lesopozharnoi aktivnosti v boreal’nykh lesakh merzlotnogo regiona Vostochnoi Sibiri (Features of forest fire activity in boreal forests of the permafrost region of Eastern Siberia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 261–271.
  12. Shvidenko A. Z., Shchepashchenko D. G., Klimaticheskie izmeneniya i lesnye pozhary v Rossii (Climate change and forest fires in Russia), Lesovedenie, 2013, No. 5, pp. 50–61.
  13. Shcherbakov I. P., Zabelin O. F., Karpel B. A., Lesnye pozhary v Yakutii i ikh vliyanie na prirodu lesa (Forest fires in Yakutia and their impact on the nature of the forest), Novosibirsk: Nauka, 1979, 226 p.
  14. Bertschi I. T., Jaffe D. A., Long-range transport of ozone, carbon monoxide, and aerosols to the NE Pacific troposphere during the summer of 2003: observations of smoke plumes from Asian boreal fires, J. Geophysical Research, 2005, Vol. 110, No. D5, p. D05303.
  15. Brewer C. K., Winne J. C., Redmond R. L., Opitz D. W., Mangrich M. V., Classifying and mapping wildfire severity: a comparison of methods, Photogrammetric Engineering and Remote Sensing, 2005, Vol. 71, No. 11, pp. 1311–1320.
  16. Fraser R. H., Li Z., Landry R., SPOT-VEGETATION for characterising boreal forest fires, Intern. J. Remote Sensing, 2000, Vol. 21, No. 18, pp. 3525–3532.
  17. Giglio L., Randerson J. T., van der Werf G. R., Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4), J. Geophysical Research: Biogeosciences, 2013, Vol. 118, No. 1, pp. 317–328.
  18. Giglio L., Boschetti L., Roy D. P., Humber M. L., Justice C. O., The Collection 6 MODIS burned area mapping algorithm and product, Remote Sensing of Environment, 2018, Vol. 217, pp. 72–85.
  19. Heilman W. E., Liu Y., Urbanski S., Kovalev V., Mickler R., Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport, and chemistry processes, Forest Ecology and Management, 2014, Vol. 317, pp. 70–79.
  20. Li Z., Kaufman Y. J., Ichoku C., Fraser R., Trishchenko A., Giglio L., Jin J., Yu X., A Review of AVHRR-based Active Fire Detection Algorithms: Principles, Limitations, and Recommendations, In: Global and Regional Vegetation Fire Monitoring from Space: Planning a Coordinated International Effort, Hague: SPB Academic Publishing BV, 2000, pp. 199–225.
  21. Mitri G. H., Gitas I. Z., A semi-automated object-oriented model for burned area mapping in the Mediter­ranean region using Landsat-TM imagery, Intern. J. Wildland Fire, 2004, Vol. 13, No. 3, pp. 367–376.
  22. Moreno Ruiz J. A., Riaño D., Arbelo M., French N. H. F., Ustin S. L., Whiting M. L., Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters, Remote Sensing of Environment, 2012, Vol. 117, pp. 407–414.
  23. Pedelty J., Devadiga S., Masuoka E., Brown M., Pinzon J., Tucker C., Vermote E., Prince S., Nagol J., Justice C., Roy D., Junchang J., Schaaf C., Jicheng L., Privette J., Pinheiro A., Generating a long-term land data record from the AVHRR and MODIS Instruments, IEEE Intern. Geoscience and Remote Sensing Symp., Proc. Conf., Barcelona, 2007, pp. 1021–1025.
  24. Pu R., Gong P., Determination of burnt scars using logistic regression and neural network techniques from a single post-fire Landsat 7 ETM+ image, Photogrammetric Engineering and Remote Sensing, 2004, Vol. 70, No. 7, pp. 841–850.
  25. Röder A., Hill J., Duguy B., Alloza J. A., Vallejo R., Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain), Remote Sensing of Environment, 2008, Vol. 112, No. 1, pp. 259–273.
  26. Rogan J., Yool S. R., Mapping fire-induced vegetation depletion in the Peloncillo Mountains Arizona and New Mexico, Intern. J. Remote Sensing, 2001, Vol. 22, No. 16, pp. 3101–3121.
  27. Sapkota A., Symons J. M., Kleissl J., Wang L., Parlange M. B., Ondov J., Breysse P. N., Diette G. B., Eggleston P. A., Buckley T. J., Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city, Environmental Science and Technology, 2005, Vol. 39, No. 1, pp. 24–32.
  28. Tomshin O. A., Solovyev V. S., The impact of large-scale forest fires on atmospheric aerosol characteristics, Intern. J. Remote Sensing, 2014, Vol. 35, No. 15, pp. 5742–5749.
  29. Tomshin O. A., Solovyev V. S., Detection of burnt areas in Yakutia on long-term NOAA satellites data (1985–2015), Proc. SPIE on 24th Intern. Symp. Atmospheric and Ocean Optics: Atmospheric Physics, 2018, Vol. 10833, p. 108338B.
  30. van der  Werf G. R., Randerson J. T., Giglio L., Collatz G. J., Mu M., Kasibhatla P. S., Morton D. C., Defries R. S., Jin Y., Van Leeuwen T. T., Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmospheric Chemistry and Physics, 2010, Vol. 10, No. 23, pp. 11707–11735.