ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 9-16

Microwave radiometer based on zero measurement method for onboard remote sensing of natural mediums

A.V. Ubaychin 1 
1 National Research Tomsk Polytechnic University, Tomsk, Russia
Accepted: 20.02.2019
DOI: 10.21046/2070-7401-2019-16-4-9-16
The article presents a new type of microwave radiometers based on zero measurements method with a simplified design. The developed block diagram of the proposed zero radiometer is shown. An original method for using the intrinsic noise of a low-noise amplifier to form the reference point of the transfer characteristic is given. An algorithm for equalizing the signal energy of the antenna with internal reference noise generators when implementing the zero-measurement method is described. A mathematical model describing the transfer characteristic, taking into account the contribution of insertion loss in the elements and modules of the microwave front end is given. Based on the above mathematical model, the invariance of the measurement results to changes in the intrinsic noise and the transmission coefficient of the radiometric receiver is shown. The influence of the contribution of insertion loss in the elements and the instability of the modules of the microwave front end to the measurement errors is investigated. The elimination of the effect of the insertion loss of the microwave front end on the measurement results during calibration using two standard noise signal sources is shown. The results of a numerical evaluation of measurement errors depending on the magnitude of insertion loss in the microwave front-end and the accuracy of its temperature control are presented. In the considered example of the implementation of the proposed zero radiometer, it is shown that the maximum measurement error associated with the contribution of insertion loss in the microwave front end and the drift of the self-noise of the reference low-noise amplifier is half the temperature accuracy.
Keywords: remote sensing, zero measurement method, microwave radiometry, radiometric methods, measurement errors, scientific instrumentation
Full text

References:

  1. Abdirasul uulu T., Alekseev E. V., Danilov D. N., Zhuk G. G., Tashkhodzhaev A. S., Ubaichin A. V., Filatov A. V., Bortovaya mikrovolnovaya radiometricheskaya sistema s vysokoi dinamikoi izmereniya (On-board microwave radiometric system with high measurement dynamics), Dinamika sistem, mekhanizmov i mashin, 2016, No. 4, pp. 62−65.
  2. Bordonskii G. S., Gurulev A. A., Orlov A. O., Tsyrenzhapov S. V., Razlichie kartin radarnykh i radiometricheskikh izmerenii (na primere ledyanogo pokrova evtrofirovannogo ozera) (The difference between the pictures of radar and radiometric measurements (an example of ice cover of the eutrophic lake)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 228−240.
  3. Nikolaev A. G., Pertsov A. G., Radioteplolokatsiya (Radiometry), Moscow: Sovetskoe radio, 1964, 326 p.
  4. Savorskii V. P., Akvilonova A. B., Ermakov D. E., Kibardina I. N., Panova O.Yu., Smirnov M. T., Turygin S. Yu., Chernushich A. P., Modelirovanie sputnikovoi SVCh-radiometricheskoi informatsii, ispol’zuemoi dlya vosstanovleniya trekhmernykh polei atmosfernykh parametrov (Simulation of satellite microwave radiometric information used to restore three-dimensional fields of atmospheric parameters), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2, pp. 235−250.
  5. Ubaichin A. V., Lineinost’ peredatochnoi kharakteristiki nulevykh radiometrov s kombinirovannoi impul’snoi modulyatsiei pri vysokom dinamicheskom diapazone izmeryaemykh shumovykh temperatur (Linearity of the transfer characteristic of zero radiometers with combined pulse modulation at a high dynamic range of measured noise temperatures), Izvestiya vysshikh uchebnykh zavedenii. Fizika, 2012, Vol. 55, No. 9−3, pp. 130−133.
  6. Ubaichin A. V., Filatov A. V., Mnogopriemnikovye mikrovolnovye radiometricheskie sistemy na osnove modifitsirovannogo metoda nulevykh izmerenii (Multi-receiver microwave radiometric systems based on a modified zero measurement method), Tomsk: Izd. TUSUR, 2014, 154 p.
  7. Camps A., Tarongi J. M., Microwave radiometer resolution optimization using variable observation times, Remote Sensing, 2010, Vol. 2, pp. 1826–1843.
  8. Frater R. H., Williams D. R., An Active “Cold” Noise Source, IEEE Trans. Microwave Theory and Techniques, 1981, Vol. 29, Issue 4, pp. 344–347.
  9. Soldatov D. P., Gladun V. V., Pirogov Yu. A., Pavlov P. A., Petukhov V. B., Tischenko D. A., Markelov V. V., Passive millimeter wave imaging system with tilt scanning, Bulletin RAS: Physics, 2012, Vol. 76, No. 12, pp. 1371−1373.