ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 238-248

The Signal automated information system: research and operational monitoring of dangerous natural phenomena in the Russian Far East

A.А. Sorokin 1 , S.P. Korolev 1 , S.I. Malkovsky 1 
1 Computing Center FEB RAS, Khabarovsk, Russia
Accepted: 21.05.2019
DOI: 10.21046/2070-7401-2019-16-3-238-248
The analysis of causes and consequences of dangerous natural phenomena requires interdisciplinary research based on processing results of big amount of heterogeneous data. To solve the problem and also to provide Russian Far Eastern observation networks support, the Signal automated information system was developed. It provides a wide range of possibilities for observation network management, archiving and storage of instrumental data. Its architecture allows including additional modules on demand for different science datasets processing. As a result, specific subsystems were created that are used in the study of modern geodynamics of Russian Far East and monitoring the activity of Kamchatka volcanoes. At the same time, the integration of information systems and data archives created at Institute of Volcanology and Seismology FEB RAS, Space Research Institute RAS and Computing Center FEB RAS made it possible to create a program platform based on the VolSatView information system for volcano eruption interdisciplinary study, using the analysis of remote sensing data in combination with ground observation data. The paper describes the obtained results and Signal development prospects. Examples of Signal data analysis and processing submodules operation are given.
Keywords: AIS Signal, database, web-service, model, numerical calculations, image, remote sensing data, volcanoes, Kamchatka
Full text

References:

  1. Bykov V. G., Bormotov V. A., Kokovkin A. A., Vasilenko N. F., Prytkov A. S., Gerasimenko M. D., Shestakov N. V., Kolomiets A. G., Sorokin A. P., Sorokina A. T., Serov M. A., Seliverstov N. I., Magus’kin M. A., Levin V. E., Bakhtiarov V. F., San’kov V. A., Lukhnev A. V., Miroshnichenko A. I., Ashurkov S. V., Byzov L. M., Duchkov A. D., Timofeev V. Yu., Gornov P. Yu., Ardyukov D. G., Nachalo formirovaniya edinoi seti geodinamicheskikh nablyudenii DVO RAN (Forming a unified observation network for geodynamic monitoring in FEB RAS), Vestnik DVO RAN, 2009, No. 4, pp. 83–93.
  2. Girina O. A., Gordeev E. I., Proekt KVERT ― snizhenie vulkanicheskoi opasnosti dlya aviatsii pri eksplozivnykh izverzheniyakh vulkanov Kamchatki i Severnykh Kuril (KVERT project: reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes), Vestnik DVO RAN, 2007, No. 2, pp. 100–109.
  3. Girina O. A., Loupian E. A., Sorokin A. A., Melnikov D. V., Romanova I. M., Kashnitskii A. V., Uvarov I. A., Malkovsky S. I., Korolev S. P., Manevich A. G., Kramareva L. S. (2018a), Kompleksnyi monitoring eksplozivnykh izverzhenii vulkanov Kamchatki (Comprehensive monitoring of explosive volcanic eruptions of Kamchatka), Petropavlovsk-Kamchatsky: IVS DVO DAN, 2018, 192 p.
  4. Girina O. A., Romanova I. M., Melnikov D. V., Manevich A. G., Loupian E. A., Sorokin A. A., Korolev S. P., Vozmozhnosti analiza dannykh o vulkanakh Kamchatki s pomoshch’yu informatsionnykh tekhnologii (Information technologies possibilities to analyza data on the volcanoes of Kamchatka), Vulkanizm i svyazannye s nim protsessy (Volcanism and Related Processes), Proc. 21st Regional Scientific Conf., 29–30 Mar. 2018, Petropavlovsk-Kamchatsky: IVS FEB RAS, 2018, pp. 32–35.
  5. Girina O. A., Malkovsky S. I., Sorokin A. A., Loupian E. A. (2018b), Retrospektivnyi analiz rasprostraneniya eruptivnoi tuchi vo vremya katastroficheskogo izverzeniya vulkana Sheveluch v noyabre 1964 g. (Retrospective analysis of the eruption cloud spread during catastrophic eruption of the volcano Sheveluch in November 1964), Vulkanizm i svyazannye s nim protsessy (Volcanism and Related Processes), Proc. 22nd All-Russia Scientific Conf., 28–29 Mar., 2019, Petropavlovsk-Kamchatsky: IViS DVO RAN, 2019, pp. 55–58.
  6. Kamaev A. N., Urmanov I. P., Sorokin A. A., Karmanov D. A., Korolev S. P., Analiz izobrazhenii dlya opredeleniya vidimosti vulkanov (Images analysis for automatic volcano visibility estimation), Computer optics, 2018, Vol. 42, No. 1, pp. 128–140.
  7. Melnikov D. V., Manevich A. G., Girina O. A., Korrelyatsiya sputnikovykh i video dannykh dlya operativnogo monitoringa vulkanicheskoi aktivnosti Kamchatki (Correlation of satellite and video data for the operational monitoring of the volcanic activity of Kamchatka), 16-ya Vserossiiskaya otkrytaya konferentsiya Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (16th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2018, p. 102.
  8. Romanova I. M., Girina O. A., Maksimov A. P., Melekestsev I. V., Sozdanie kompleksnoi informatsionnoi veb-sistemy “Vulkany Kurilo-Kamchatskoi ostrovnoi dugi” (VOKKIA) (Creation of complex information Web system Volcanoes of the Kurile-Kamchatka island arc (VOKKIA)), Informatika i sistemy upravleniya, 2012, Vol. 33, No. 3, pp. 179–187.
  9. Sorokin A. A., Korolev S. P., Girina  O. A., Balashov I. V., Efremov V. Yu., Romanova I. M., Malkovsky S. I., Integrirovannaya programmnaya platforma dlya kompleksnogo analiza rasprostraneniya peplovykh shleifov pri eksplozivnykh izverzheniyakh vulkanov Kamchatki (The integrated software platform for a comprehensive analysis of ash plume propagation from explosive eruptions of Kamchatka volcanoes), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 9–19.
  10. Sorokin A. A., Korolev S. P., Shestakov N. V., Malkovsky S. I., Tsoy G. I., Pupatenko V. V., Organizatsiya raboty s dannymi global’nykh navigatsionnykh sputnikovykh sistem dlya kompleksnogo issledovaniya sovremennykh geodinamicheskikh protsessov na yuge Dal’nego Vostoka Rossii (Data management of global navigation satellite system for complex study of modern geodynamic processes in Far East of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 158–172.
  11. Bassett L., Introduction to JavaScript Object Notation: A To-the-Point Guide to JSON, O`Reilly Media, 2015, 126 p.
  12. Gordeev E. I., Girina O. A., Volcanoes and their hazard to aviation, Herald of the Russian Academy of Sciences, 2014, Vol. 84, No. 1, pp. 1–8.
  13. Gordeev E. I., Girina O. A., Lupyan E. A., Sorokin A. A., Kramareva L. S., Efremov V. Yu., Kashnitskii A. V., Uvarov I. A., Burtsev M. A., Romanova I. M., Mel’nikov D. V., Manevich A. G., Korolev S. P., Verkhoturov A. L., The VolSatView information system for Monitoring the Volcanic Activity in Kamchatka and on the Kuril Islands, J. Volcanology Seismology, 2016, Vol. 10, No. 6, pp. 382–394.
  14. Korolev S. P., Sorokin A. A., Verkhoturov A. L., Konovalov A. V., Shestakov N. V., Automated information system for instrument-data processing of the regional seismic observation network of FEB RAS, Seismic Instruments, 2015, Vol. 51, No. 3, pp. 209–218.
  15. Malkovsky S. I., Sorokin A. A., Korolev S. P., Improving the system of numerical simulation of volcanic ash propagation using the PUFF model, Russian J. Earth Sciences, 2017, Vol. 17, No. 5, ES5003, pp. 1–6.
  16. Richardson L., Amundsen M., Ruby S., RESTful web APIs, O’Reilly Media, 2013, 408 p.
  17. Searcy C., Dean K., Stringer W., PUFF: a high-resolution volcanic ash tracking model, J. Volcanology and Geothermal Research, 1998, Vol. 80, No. 1–2, pp. 1–16.
  18. Sorokin A. A., Makogonov S. I., Korolev S. P., The Information Infrastructure for Collective Scientific Work in the Far East of Russia, Scientific and Technical Information Processing, 2017, Vol. 44, No. 4, pp. 302–304.
  19. Urmanov I. P., Kamaev A. N., Sorokin A. A., Computer methods of image processing of volcanoes,Advances in Computer Science Research, 2017, Vol. 72, pp. 371–374.