Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 44-60
The use of satellite data on land surface and meteorological characteristics in modeling the water and heat regimes of large agricultural region
E.L. Muzylev
1 , Z.P. Startseva
1 , A.M. Zeyliger
2 , O.S. Ermolaeva
2 , E.V. Volkova
3 , E.V. Vasilenko
3 , A.I. Osipov
4 1 Water Problems Institute RAS, Moscow, Russia
2 Russian State Agrarian University ― Moscow Timiryazev Agricultural Academy, Moscow, Russia
3 State Research Center “Planeta”, Moscow, Russia
4 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 10.03.2019
DOI: 10.21046/2070-7401-2019-16-3-44-60
Estimates of the water and heat regime characteristics of the part of the Central Black Earth region territory largely occupied by crops are presented for the vegetation seasons 2016–2017. These estimates were obtained using the model of vertical water and heat exchange between land surface and atmosphere LSM (Land Surface Model) utilizing satellite information on the land surface and meteorological conditions. This information was presented by the data of AVHRR/NOAA, MSU MR/“Meteor-M” No. 2, and SEVIRI/Meteosat-10, -11, -8. Among the characteristics calculated using the model are soil water content W, evapotranspiration Ev, vertical heat fluxes, land surface temperature, soil moisture and temperature at different soil depths. In the frame of this approach, the methods to use satellite-derived from Meteosat-11, -8 data estimates of meteorological characteristics (precipitation, vegetation and soil surface temperatures, effective land surface temperature) and vegetation characteristics (vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, etc.) in the model were tested for the territory under study. Values of W and Ev in their dynamics during the vegetation season modeled using different variants of satellite-derived vegetation and meteorological characteristic estimation from measurements of all the above sensors were compared with actual W and Ev values. The estimation errors were within 15 % for W and 25 % for Ev. The possibility to use estimates of soil surface moisture, obtained from the ASCAT/MetOp scatterometer measurements in the microwave range when modeling was shown. Using these estimates, the initial conditions can be selected when calculating soil water content W and evaporation from the soil surface Evg, which is one of the water regime characteristics. The calculated Evg values were used directly to calculate values of W as well as to assign the upper boundary condition for the vertical soil water transfer equation.
Keywords: modeling, satellite data, soil water content, evapotranspiration, water and heat regimes, soil surface moisture, precipitation, land surface temperature, leaf area index, vegetation cover fraction
Full textReferences:
- Volkova E. V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnykh yavlenii pogody po dannym radiometra AVHRR c MISZ serii NOAA kruglosutochno v avtomaticheskom rezhime (Automatic estimation of cloud cover and precipitation parameters obtained by AVHRR NOAA for day and night conditions), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74.
- Volkova E. V., Opredelenie summ osadkov po dannym radiometrov SEVIRI/Meteosat-9, -10 i AVHRR/NOAA dlya Evropeiskoi territorii Rossii (Estimation of precipitation amount using SEVIRI/Meteosat-9 and AVHRR/NOAA data for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 163–177.
- Volkova E. V., Otsenki parametrov oblachnogo pokrova i osadkov po dannym radiometra MSU-MR polyarno-orbital’nogo meteosputnika “Meteor-M” No. 2 dlya Evropeiskoi territorii Rossii (Detection and assessment of cloud cover and precipitation parameters using data from MSU-MR radiometer of the polar-orbiting “Meteor-M” No. 2 for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 300–320.
- Volkova E. V., Uspenskii A. B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ Meteosat-9 kruglosutochno v avtomaticheskom rezhime (Estimation of cloud cover parameters from Meteosat-9 geostationary meteorological satellite data for day and night time), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22.
- Volkova E. V., Uspenskii A. B., Otsenki parametrov oblachnogo pokrova i osadkov po dannym skaniruyushchikh radiometrov polyarno-orbital’nykh i geostatsionarnykh meteosputnikov (Estimations of the cloud cover parameters and precipitation using data from scanning radiometers of the polar-orbiting and geostationary meteorological satellites), Issledovanie Zemli iz kosmosa, 2015, No. 5, pp. 40–43.
- Volkova E. V., Uspenskii S. A., Distantsionnoe opredelenie temperatury podstilayushchei poverkhnosti, prizemnoi temperatury vozdukha i effektivnoi temperatury po sputnikovym dannym dlya yuga Evropeiskoi territorii Rossii (Land surface, land air and effective temperature estimation for territories of Southern European Russia based on satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 291–303.
- Volkova E. V., Uspenskii A. B., Kukharskii A. V., Spetsializirovannyi programmnyi kompleks polucheniya i validatsii sputnikovykh otsenok parametrov oblachnosti i osadkov (Specialized complex of programs for retrieving and validating satellite estimates of cloud and precipitation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 7–26.
- Volkova E. V., Muzylev E. L., Startseva Z. P., Opredelenie temperatury podstilayushchei poverkhnosti po dannym MSU-MR/“Meteor-M” No. 2 na primere Tsentral’no-Chernozemnogo regiona ETR (Estimations of land surface temperature from the MSU-MR/“Meteor-M” No. 2 data for the Central Black Earth Region of the European Russia), Mezhdunarodnyi simpozium “Atmosfernaya radiatsiya i dinamika” (MSARD–2017) (Intern. Symp. “Atmospheric Radiation and Dynamics” (ISARD–2017)), Book of Abstracts, St. Petersburg, 2017, pp. 47–49.
- Zeiliger A. M., Upravlenie oroshaemym zemledeliem po dannym nazemnogo i kosmicheskogo monitoringa (Irrigated agriculture management using ground and space monitoring data), In: Upravlenie sel’khozpredpriyatiem s ispol’zovaniem kosmicheskikh sredstv navigatsii (GLONASS) i distantsionnogo zondirovaniya Zemli (Agricultural enterprise management using space navigation devices (GLONASS) and remote sensing of the Earth), Moscow: Izd. RGAU-MSKHA, 2016, pp. 194–228.
- Zeiliger A. M., Ermolaeva O. S., Otsenka trendov degradatsii/progradatsii rastitel’nogo pokrova sel’skokhozyaistvennykh zemel’ s ispol’zovaniem dannykh DZZ (Evaluation of degradation/progradation trends of vegetation cover on agricultural land using remote sensing data), 12-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (12th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2014, p. 362.
- Zeiliger A. M., Ermolaeva O. S. (2016a), Rezul’taty komp’yuternogo modelirovaniya vodnogo stressa posevov oroshaemoi lyutserny po dannym nazemnogo meteorologicheskogo i kosmicheskogo monitoringa temperatury podstilayushchego sloya s ispol’zovaniem FAO-56 i modeli SEBS (Results of computer modeling water stress of irrigated alfalfa crops from data on ground-based meteorological and space monitoring the underlying layer temperature using the FAO-56 and SEBS model), In: Ekologiya. Ekonomika. Informatika: sb. st., V 2 t., T. 2, Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economics. Informatics. Vol. 2: Geoinformation technologies and space monitoring), Rostov-on-Don: Izd. Yuzhnogo federal’nogo universiteta, 2016, pp. 258–273.
- Zeiliger A. M., Ermolaeva O. S. (2016b), Informatsionnye tekhnologii v monitoringe bogarnykh i oroshaemykh agrotsenozov (Information technologies in monitoring of rainfed and irrigated agrocenoses), Sovremennye naukoemkie tekhnologii, 2016, No. 10 (part 1), pp. 62–66.
- Zeiliger A. M., Ermolaeva O. S. (2016c), Analiz rezhima vodnogo stressa oroshaemykh agrotsenozov s ispol’zovaniem dannykh kosmicheskogo monitoringa agrogidrologicheskikh modelei AquaCrop i SWAP (Analysis of the water stress regime of irrigated agrocenoses using space monitoring data of agro-hydrological models AquaCrop and SWAP), 14-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”‘), Book of Abstracts, Moscow, 2016, p. 352.
- Zeiliger A. M., Ermolaeva O. S. (2016d), Komp’yuternyi kod otsenki evapotranspiratsii agrotsenozov po dannym DZZ (Computer code for evaluating the evapotranspiration of agrocenoses from remote sensing data), 14-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2016, p. 353.
- Zeiliger A. M., Ermolaeva O. S., Krichevtsova A. N., Rezul’taty prostranstvenno-vremennogo analiza naborov dannykh DZZ po ispareniyu s poverkhnosti sushi MOD16 ET za 2000–2009 gody dlya territorii Pallasovskogo raiona Volgogradskoi oblasti RF (The results of the space-time analysis of the remote sensing data sets on evaporation from the land surface MOD16 ET over 2000–2009 for the territory of the Pallasovsky district of the Volgograd region), In: Ekologiya. Ekonomika. Informatika: sb. st., V 3 t., T. 3, Geoinformatsionnye tekhnologii i kosmicheskii monitoring (Ecology. Economics. Informatics. Vol. 3: Geoinformation technologies and space monitoring), Rostov-on-Don: Izd. Yuzhnogo federal’nogo universiteta, 2015, pp. 35–48.
- Kuchment L. S., Motovilov Yu. G., Startseva Z. P., Modelirovanie vlagoperenosa v sisteme pochva-rastitel’nost’-prizemnyi sloi atmosfery dlya gidrologicheskikh zadach (Modeling water transfer in the “soil-vegetation-surface layer of atmosphere” system for hydrological goals), Vodnye resursy, 1989, No. 2, pp. 32–39.
- Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Modelirovanie gidrologicheskogo tsikla rechnykh vodosborov s ispol’zovaniem sinkhronnoi sputnikovoi informatsii vysokogo razresheniya (Simulation of hydrological cycle of river basins using synchronous high resolution satellite data), Meteorologiya i gidrologiya, 2002, No. 5, pp. 68–82.
- Muzylev E. L., Uspenskii A. B., Volkova E. V., Startseva Z. P., Ispolzovanie sputnikovoi informatsii pri modelirovanii vertikalnogo teplo- i vlagoperenosa dlya rechnykh vodosborov (Using satellite information for modeling heat and moisture transfer in river watersheds), Issledovanie Zemli iz kosmosa, 2005, No. 4, pp. 35–44.
- Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Kukharskii A. V., Modelirovanie sostavlyayushchikh vodnogo i teplovogo balansov dlya rechnogo vodosbora c ispol’zovaniem sputnikovykh dannykh o kharakteristikakh podstilayushchei poverkhnosti (Modeling water and heat balance components for the river basin using remote sensing data on underlying surface characteristics), Meteorologiya i gidrologiya, 2010, No. 3, pp. 118–133.
- Muzylev E. L., Uspenskii A. B., Startseva Z. P., Volkova E. V., Kukharskii A. V., Uspenskii S. A., Ispol’zovanie dannykh distantsionnogo zondirovaniya pri modelirovanii komponent vodnogo i teplovogo balansov territorii Tsentral’no-Chernozemnykh oblastei Rossii (Utilization of remote sensing data for modeling water and heat balance components of the Russian Central Black Earth Region territory), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 17–34.
- Muzylev E. L., Startseva Z. P., Uspenskii A. B., Volkova E. V., Vasilenko E. V., Kukharskii A. V., Zeiliger A. M., Ermolaeva O. S., Ispol’zovanie dannykh distantsionnogo zondirovaniya pri modelirovanii vodnogo i teplovogo rezhimov sel’skikh territorii (Using remote sensing data to model water and heat regimes of rural territories), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 108–136.
- Solovjev V. I., Uspensky S. A., Monitoring temperatury poverkhnosti sushi po dannym geostatsionarnykh meteorologicheskikh sputnikov novogo pokoleniya (Monitoring of land surface temperatures based on data from geostationary meteorological satellites), Issledovanie Zemli iz kosmosa, 2009, No. 3, pp. 79–89.
- Solov’ev V. I., Uspenskii A. B., Uspenskii S. A. (2010a), Opredelenie temperatury zemnoi poverkhnosti po dannym izmerenii ukhodyashchego teplovogo izlucheniya s geostatsionarnykh meteorologicheskikh ISZ (Derivation of Land Surface Temperature Using Measurements of IR Radiances from Geostationary Meteorological Satellites), Meteorologiya i gidrologiya, 2010, No. 3, pp. 5–17.
- Solovjiev V. I., Uspensky S. A., Uspensky A. B. (2010b), Razvitie metodov monitoringa temperatury poverkhnosti sushi po dannym geostatsionarnykh sputnikov novogo pokoleniya (Monitoring of land surface temperatures based on data from new generation geostationary satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 2, pp. 67–74.
- Uspenskii A. B., Shcherbina G. I., Otsenka temperatury i izluchatel’noi sposobnosti poverkhnosti sushi po dannym izmerenii ukhodyashchego teplovogo izlucheniya s ISZ NOAA (Assessment of land surface temperature and emissivity from NOAA satellite measurement data on outgoing heat radiation), Issledovanie Zemli iz kosmosa, 1996, No. 5, pp. 4–13.
- Uspenskii S. A., Uspenskii A. B., Rublev A. N., Analiz vozmozhnosti monitoringa pripoverkhnostnoi temperatury vozdukha po dannym geostatsionarnykh meteorologicheskikh sputnikov (Analysis of land air temperature mapping capabilities with geostationary satellite data), Mezhdunarodnyi simpozium “Atmosfernaya radiatsiya i dinamika” (MSARD–2011) (Intern. Symp. “Atmospheric Radiation and Dynamics” (ISARD–2011)), Book of Abstracts, St. Petersburg: Izd. SPbGU, 2011, pp. 37–38.
- Anderson M. C., Norman J. M., Diak G. R., Kustas W. P., Mecikalski J. R., A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing, Remote Sensing of Environment, 1997, Vol. 60, pp. 195–216.
- Bach H., Mauser W., Methods and Examples for Remote Sensing Data Assimilation in Land Surface Process Modeling, IEEE Trans. Geoscience and Remote Sensing, 2003, Vol. 41, pp. 1629–1636.
- Bastiaanssen W. G. M., Menenti M., Feddes R. A., Holtslag A. A. M. (1998a), A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL): Part 1. Formulation, J. Hydrology, 1998, Vol. 212–213, pp. 198–212.
- Bastiaanssen W. G. M., Pelgrum H., Wang J., Ma Y., Moreno J. F., Roerink G. J., van der Wal T. (1998b), A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL): Part 2. Validation, J. Hydrology, 1998, Vol. 212–213, pp. 213–229.
- Bezerra B. G., Silva B. B., Santos C. A. C., Bezerra J. R. C., Actual evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB approaches, Advances in Remote Sensing, 2015, Vol. 4, No. 3, pp. 234–247.
- Biftu G. F., Gan T. Y., Assessment of evapotranspiration models applied to a watershed of Canadian Prairies with mixed land uses, J. Hydrologic Processes, 2000, Vol. 18, pp. 1305–1325.
- Biftu G. F., Gan T. Y., Semi-distributed, physically based, hydrologic modeling of the Paddle River basin, Alberta, using remotely sensed data, J. Hydrology, 2001, Vol. 244, pp. 137–156.
- Biospheric Aspects of the Hydrological Cycle (BAHS), Report No. 27, Ed. by BAHC Core Project Office, Berlin, Germany: Institut fűr Meteorologie, Freie Universitat, 1993, 103 p.
- Boegh E., Thorsen M., Butts M. B., Hansen S., Christiansen J. S., Abrahamsen P., Hasager S. B., Jensen N. O., Van der Keur P., Refsgaard J. C., Schelde K., Soegaard H., Thomsen A., Incorporating Remote Sensing Data in Physically Based Distributed Agro-Hydrological Modelling, J. Hydrology, 2004, Vol. 287, pp. 279–299.
- Chen J. M., Chen X., Ju W., Geng X., Distributed hydrological model for mapping evapotranspiration using remote sensing inputs, J. Hydrology, 2005, Vol. 305, No. 1, pp. 15–39.
- French A. N., Hunsaker D. J., Thorp K. R., Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models, Remote Sensing of Environment, 2015, Vol. 158, pp. 281–294.
- Gelfan A., Muzylev E., Uspensky A., Startseva Z., Romanov P., Remote Sensing Based Modeling of Water and Heat Regimes in a Vast Agricultural Region, Remote Sensing ― Application, Rijeka, Croatia: InTech ― Open Access Publisher, 2012, Chapter 6, pp. 141–176.
- Gowda P. H., Chavez J. L., Colaizzi P. D., Evette S. R., Howell T. A., Tolk J. A., ET mapping for agricultural water management: present status and challenges, Irrigation Science, 2008, Vol. 26, pp. 223–237.
- Kuchment L. S., Startseva Z. P., Sensitivity of evapotranspiration and soil moisture in wheat fields to changes in climate and direct effects of carbon dioxide, Hydrological Sciences J., 1991, Vol. 36, No. 6, pp. 631–643.
- Land Surface Temperature (LST): Product User Manual, Issue 2.5, LSA SAF, 2010, 49 p.
- Leng P., Li Z.-L., Duan S.-B., Gao M.-F., Huo H.-Y., A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data, ISPRS J. Photogrammetry and Remote Sensing, 2017, Vol. 131, pp. 40–51.
- Moehrlen C., Literature review of current used SVAT models, Internal Report 04-99, Cork, Ireland: University College, Department of Civil and Environmental Engineering, 1999, pp. 1–22.
- Muzylev E. L., Startseva Z. P., Uspensky A. B., Volkova E. V., Modeling Water and Heat Balance Components for Large Agricultural Region Utilizing Information from Meteorological Satellites, Water Resources, 2018, Vol. 45, No. 5, pp. 672–684.
- Pitman A. J., The evolution of, and revolution in, land surface schemes designed for climate models, Intern. J. Climatology, 2003, Vol. 3, pp. 479–510.
- Startseva Z., Muzylev E., Volkova E., Uspensky A., Uspensky S., Water and heat regimes modelling for a vast territory using remote-sensing data, Intern. J. Remote Sensing, 2014, Vol. 35, No. 15, pp. 5775–5799.
- Taconet O., Bernard L., Vidal-Madjar D., Evapotranspiration over agricultural region using a surface flux/temperature model based on NOAA-AVHRR data, J. Applied Meteorology and Climatology, 1986, Vol. 25, No. 3, pp. 284–307.
- Uspensky A. B., Shcherbina G. I., Derivation of land surface temperatures and emissivities from satellite IR window measurements, Advanced Space Research, 1998, Vol. 21, No. 3, pp. 433–437.
- Vazifedoust M., Van Dam J. C., Bastiaanssen W. G. M., Feddes R. A., Assimilation of Satellite Data into Agro-Hydrological Models to Improve Crop Yield Forecasts, Intern. J. Remote Sensing, 2009, Vol. 30, pp. 2523–2545.
- Wan Z., Dozier J., A generalized split-window algorithm for retrieving land surface temperature from space, IEEE Trans. Geoscience and Remote Sensing, 1996, Vol. 34, No. 4, pp. 892–905.
- Yang D., Chen H., Lei H., Estimation of Evapotranspiration Using a Remote Sensing Model over Agricultural Land in the North China Plain, Intern. J. Remote Sensing, 2010, Vol. 31, pp. 3783–3798.
- Yang Y., Shang S., Jiang S., Remote Sensing Temporal and Spatial Patterns of Evapotranspiration and the Responses to Water Management in a Large Irrigation District of North China, Agricultural and Forest Meteorology, 2012, Vol. 164, pp. 112–122.
- Zeyliger A. M., Ermolaeva O. S., Water Stress and Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 18–23 April 2016, Vol. 18, p. 13486.
- Zeyliger A. M., Ermolaeva O. S., Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring and Forecasting and SWAP Modeling, Geophysical Research Abstracts, EGU General Assembly, Vienna, Austria, 24–28 April 2017, Vol. 19, p. 15422.