ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 33-43

Computer analysis of water stress regimes of an irrigated agrocoenosis using the SWAP model and ground and space monitoring data

A.M. Zeyliger 1 , O.S. Ermolaeva 1 , E.L. Muzylev 2 , Z.P. Startseva 2 , Yu.I. Sukharev 1 
1 Russian State Agrarian University ― Moscow Timiryazev Agricultural Academy, Moscow, Russia
2 Water Problems Institute RAS, Moscow, Russia
Accepted: 25.04.2019
DOI: 10.21046/2070-7401-2019-16-3-33-43
Results of computer modeling of water stress regimes of the irrigated alfalfa, corn and soya bean crops at the level of a specific agrocenosis are presented. The SWAP model has been used for the analysis. Comparison of the results of the computer modeling of water stress with bioproductivity has been made on the basis of the data of ground monitoring carried out concurrently with satellite survey in 2012 in the fields of the farms located in Saratov Zavolzhye region. As a result, the correlation between the calculated values of the accumulated water stress of specified crops during vegetation period and the data of their productivity was revealed. The computer model used for calculation of water stress included blocks describing water and heat fluxes in the atmosphere – agrocenosis – soil – ground waters system, as well as datasets of soil boundary conditions and parameters of soil hydrological characteristics. The datasets describing boundary conditions at soil surface were created from the results of ground and space monitoring, and also information from crops irrigation operational management. Parameters of hydrological characteristics of soil layers were calculated with the help of additive models of soil structure with the use of physical-mechanical characteristics of a soil texture.


Keywords: agricultural crop, irrigation, evapotranspiration, underlying layer, water stress, remote sensing, GIS, MODIS
Full text

References:

  1. Voronin A. D., Zeiliguer A. M., Modelirovanie struktury porovogo prostranstva pochv. 1. Raschet osnovnoi gidrofizicheskoi kharakteristiki pochv po mekhanicheskomu i mikroagregatnomu sostavu pochv (Modeling the structure of the pore space of soils. 1. Calculation of the main hydrophysical characteristic of soil from particle-size and micro aggregate analysis), Pochvovedenie, 1988, No. 4, pp. 49–59.
  2. Golovanov A. I., Optimizatsiya rezhimov orosheniya chernozemov (Optimization of the irrigation of chernozem regimes), Pochvovedenie, 1993, No. 6, pp. 79–84.
  3. Dobrachev Yu. P., Kuznetsova N. A., Lobachev S. B., Burdyugov V. G., Optimizatsiya rezhima orosheniya s pomoshch’yu imitatsionnoi modeli (Optimization of the mode of irrigation by means of imitating model), Melioratsiya i vodnoe khozyaistvo, 1988, No. 4, pp. 46–50.
  4. Zeiliger A. M., Strukturnye modeli pochv i ikh gidrofizicheskie kharakteristiki: Avtoref. diss. dokt. biol. nauk (Structural models of soils and their hydrophysical characteristics, Ext. abstract Dr. biol. sci. thesis), Moscow: MGU, 1995, 38 p.
  5. Zeiliger A. M., Tochnoe (differentsirovannoe) oroshaemoe zemledelie ― tekhnologiya povysheniya effektivnosti orosheniya i snizheniya nagruzki na okruzhayushchuyu sredu (Precision (differential) irrigated agriculture ― technology to improve irrigation efficiency and reduce the influence on the environment), Innovatsionnye tekhnologii povysheniya effektivnosti meliorativnykh sistem i bezopasnosti gidrotekhnicheskikh sooruzhenii, 2010, Vol. 2, pp. 664–668.
  6. Zeiliger A. M., Ermolaeva O. S. (2016a), Rezul’taty komp’yuternogo modelirovaniya vodnogo stressa posevov oroshaemoi lyutserny po dannym nazemnogo meteorologicheskogo i kosmicheskogo monitoringov temperatury podstilayushchego sloya s ispol’zovaniem metodiki FAO-56 i modeli SEBS (Results of computer modeling of a water stress of crops of the irrigated lucerne according to land meteorological and space monitoring of temperature of the spreading layer with use of a technique of FAO-56 and the SEBS model), Ekologiya. Ekonomika. Informatika, 2016, Vol. 2, pp. 258–273.
  7. Zeiliger A. M., Ermolaeva O. S. (2016b), Informatsionnye tekhnologii v monitoringe bogarnykh i oroshaemykh agrotsenozov (Information technologies in monitoring of the bogarny and irrigated agrocenosis), Sovremennye naukoemkie tekhnologii, 2016, Vol. 10-1, pp. 62–66.
  8. Klib E. G., Zatinatskii S. V., Zeiliger A. M., Khitrov N. B., Sravnitel’nye issledovaniya dostovernosti additivnoi modeli agregirovannykh pochv dlya kharakteristiki vodouderzhivaniya chernozema obyknovennogo (Comparative researches of reliability of additive model of the aggregated soils for the characteristic of water keeping of the chernozem ordinary), Vestnik Saratovskogo gosudarstvennogo agrarnogo universiteta im. N. I. Vavilova, 2007, No. 2, pp. 20–23.
  9. Muzylev E. L., Startseva Z. P., Uspensky A. B., Volkova E. V., Vasilenko E. V., Kukharsky A. V., Zeyliger A. M., Ermolaeva O. S., Ispol’zovanie dannykh distantsionnogo zondirovaniya dlya modelirovaniya vodnogo i teplovogo rezhimov sel’skikh territorii (Using remote sensing data to model water and heat regimes of rural territories), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 108–136.
  10. Shulga E. F., Kupriyanov A. O., Khlyustov V. K., Balabanov V. I., Zeiliger A. M., Upravlenie sel’khozpredpriyatiem s ispol’zovaniem kosmicheskikh sredstv navigatsii (GLONASS) i distantsionnogo zondirovaniya Zemli (Management of agricultural enterprise with use of space navigation aids (GLONASS) and remote sensing of Earth), Moscow: Izd. RGAU-MSHA, 2016, 282 p.
  11. Ababaei B., Are weather generators robust tools to study daily reference evapotranspiration and irrigation requirement? Water Resources Management, 2014, Vol. 28, No. 4, pp. 915–932.
  12. Allen R. G., Pereira L., Raes D., Smith M., Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56, Rome: FAO, 1998, 15 p.
  13. Bastiaanssen W. G. M., Noordman E. J. M., Pelgrum H., Davids G., Thoreson B. P., Allen R. G., SEBAL model with remotely sensed data to improve water resources management under actual field conditions, J. Irrigation and Drainage Engineering, 2005, Vol. 131, No. 1, pp. 85–93.
  14. Bezerra B. G., Silva B. B., Santos C. A.C., Bezerra J. R. C., Actual evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB approaches, Advanced Remote Sensing, 2015, Vol. 4, No. 3, pp. 234–247.
  15. Feddes R. A., Crop factors in relation to Makking reference crop evapotranspiration, Technical Bull. Inst. for Land and Water Management Research, 1987, No. 39, pp. 33–45.
  16. Gowda P. H., Chavez J. L., Colaizzi P. D., Evette S. R., Howell T. A., Tolk J. A., ET mapping for agricultural water management: present status and challenges, Irrigation Science, 2008, Vol. 26, pp. 223–237.
  17. Hongjun L., Jiazhen L., Yanjun S., Xiying Z., Yuping L., Web-based irrigation decision support system with limited inputs for farmers, Agricultural Water Management, 2018, Vol. 210(C), pp. 279–285.
  18. Kroes J. G., Van Dam J. C., Bartholomeus R. P., SWAP version 4. Theory description and user manual, Wageningen Environmental Research, Report 2780, 2017, 285 p.
  19. Mannini P., Genovesi R., Letterio T., IRRINET: Large Scale DSS Application for On-farm Irrigation Scheduling, Procedia Environmental Sciences, 2013, Vol. 19, pp. 823–829.
  20. Muzylev E. L., Zeyliger A. M., Startseva Z. P., Volkova E. V., Vasilenko E. V., Ermolaeva O. S., Modeling Processes of Water and Heat Regime Formation for Agricultural Region Area (Russia) Utilizing Satellite Data, In: Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources, Proc. 1st Springer Conf. Arabian J. Geosciences (CAJG-1), Tunisia, 2018, pp. 37–39.
  21. Overgaard J., Rosbjerg J. D., Butts M. B., Land-Surface Modeling in Hydrological Perspective ― a Review, Biogeosciences, 2006, Vol. 3, pp. 229–241.
  22. Su Z., The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes, Hydrology and Earth System Sciences, 2002, No. 6, pp. 85–100.
  23. Wenchao W., Yuanlai C., Yufeng L., Zenghuan L., Junwei T., Web-based decision support system for canal irrigation management, Computers and Electronics in Agriculture, 2017, available at: https://doi.org/10.1016/j.compag.2017.11.018.
  24. Yanfei M., Shaomin L., Lisheng S., Ziwei X., Yaling L., Tongren X., Zhongli Z., Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data, Remote Sensing of Environment, 2018, Vol. 216, pp. 715–734.
  25. Yoder R. E., Odhiambo L. O., Wright W. C., Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid southeast United States, Applied Engineering in Agriculture, 2005, Vol. 21, pp. 197–202.
  26. Zeiliguer A. M., A Hierarchical System to Model the Pore Structure of Soils: Indirect Methods for Evaluating the Hydraulic Properties, Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, Proc., M. Th. van Genuchten, F. J. Leij, L. J. Lund (eds.), Riverside, University of California, 1992, pp. 499–514.
  27. Zeiliguer A. M., Pachepsky Ya. A., Rawls W. J., Estimating water retention of sandy soils using the additivity hypothesis, Soil Sciences, 2000, Vol. 165, No. 5, pp. 373–383.