ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 87-95

Integrated system for control of soil moisture and local weather conditions for remote sensing data interpretation

Yu.I. Blokhin 1 , A.V. Belov 1 , S.Yu. Blokhina 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 13.02.2019
DOI: 10.21046/2070-7401-2019-16-3-87-95
Currently, the ground within-field agrophysical information and remote sensing data fusion is the most promising approach of real-time soil moisture measurement with high spatial and temporal resolution for substantiation and subsequent site-specific application of nitrogen fertilizer in the precision agriculture. The paper presents an integrated system for collecting ground-based agrophysical information and weather conditions with the use of wireless sensor network. The system includes 7-channel agrometeorological station located next to the experimental fields with the Internet channel for remote access to the measured data, a soil vertical profile moisture sensor and a needle-type moisture sensor for topsoil route survey measurements. The agrometeorological station used for measuring temperature and relative air humidity, soil temperature, wind speed, accumulated precipitation, photosynthetic active radiation and radiation balance. The preliminary results of testing the prototype of in-field integrated system on the soddy-podzolic soil of the Menkovo experimental station of Agrophysical Research Institute (biopolygon of ARI) in 2018 are reported. The complex spatial attribute information was transmitted into the database of the GIS-ARI and was used for remote sensing data interpretation in the experiments on the precision crop production.
Keywords: precision agriculture, remote sensing data, dielectric conductivity, volumetric moisture content, soil moisture profile, soddy-podzolic soil
Full text

References:

  1. Ananyev I. P., Avtogeneratornye izmeritel’nye preobrazovateli dvukhkomponentnoi diel’kometrii sel’skokhozyaistvennykh materialov: Avtoref. dis. d-ra tekhn. nauk (Self-maintained dielcometric transducers for two-component complex permittivity of agricultural materials. Ext. abstract Dr. techn. sci. thesis), Saint Petersburg, 2009, 295 p.
  2. Ananyev I. P., Belov A. V., Zubets V. S., Impedansnye vlagomery nezasolennykh pochv s emkostnym datchikom (Impedance moisture sensors for dissolved soils with capacitive sensor), Agroekosistemy v estestvennykh i reguliruemykh usloviyakh: ot teoreticheskoi modeli k praktike pretsizionnogo upravleniya (Agro-Ecosystems in Natural and Adjustable Conditions: From a Theoretical Model to the Practice of Precision Management), Proc. All-Russia Conf. with Intern. Participation, 2016, pp. 365–372.
  3. Blokhin Yu. I., Zubets V. S., Belov A. V., Filippov P. A., Issledovanie profilya vlazhnosti pochvy s ispol’zovaniem skvazhnogo vlagomera v statsionarnykh obsadnykh trubakh (Investigation of the soil moisture vertical profile using a soil profile moisture sensor in the stationary access tubes), Tendentsii razvitiya agrofiziki: ot aktual’nykh problem zemledeliya i rastenievodstva k tekhnologiyam budushchego (Trends in the development of agrophysics: from modern problems of agriculture and crop production to the technology of the future), Proc. Intern. Scientific Conf. Dedicated to the 85th Anniversary of the Agrophysical Research Institute, 2017, pp. 835–839.
  4. Bykov F. L., Vasilenko E. V., Gordin V. A., Tarasova L. L., Statisticheskaya struktura polya vlazhnosti verkhnego sloya pochvy po dannym nazemnykh i sputnikovykh nablyudenii, Meteorologiya i gidrologiya, 2017, No. 6, pp. 68–84.
  5. Kiselev A. V., Muratova N. R., Gornyi V. I., Tronin A. A., Svyaz’ zapasov produktivnoi vlagi v pochve s polem sily tyazhesti Zemli (po dannym sʺemok sputnikami GRACE) (Relation between available water content in soil and gravity force (from GRACE data)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 6, pp. 7–16.
  6. Loupian E. A., Savin I. Yu., Bartalev S. A., Tolpin V. A., Balashov I. V., Plotnikov D. E., Sputnikovyi servis monitoringa sostoyaniya rastitel’nosti (“VEGA”) (Satellite Service for Vegetation Monitoring VEGA), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 190–198.
  7. Rodionova N. V., Svyaz’ radarnykh dannykh Sentinel 1 s nazemnymi izmereniyami temperatury pochvy (Sentinel 1 data correlation with ground measurements of soil temperature), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 135–148.
  8. Yakushev V. P., Blokhina S. Yu., Sostoyanie i perspektivy ispol’zovaniya distantsionnogo zondirovaniya Zemli v interesakh sel’skogo khozyaistva (Current problems and prospects for the use of remote sensing of the Earth in agriculture), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 257–262.
  9. Anisi M. H., Abdul-Salaam G., Abdullah A. H., A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture, Precision Agriculture, 2014, Vol. 16(2), pp. 216–238.
  10. Cambra C., Sendra S., Lloret J., Garcia L., An IoT service-oriented system for agriculture monitoring, IEEE Intern. Conf. Communications, 2017, pp. 1–6.