ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 24-32

Advanced features of automated detection of within-field variability based on hyperspectral images and optical criteria

V.P. Yakushev 1 , E.V. Kanash 1 , V.V. Yakushev 1 , D.A. Matveenko 1 , D.V. Rusakov 1 , S.Yu. Blokhina 1 , A.F. Petrushin 1 , E.P. Mitrofanov 1 
1 Agrophysical Research Institute, Saint Petersburg, Russia
Accepted: 20.03.2019
DOI: 10.21046/2070-7401-2019-16-3-24-32
Precision agriculture (PA) is the trend in modern agriculture where agricultural technologies are being adapted to the within-field spatial variability of the crop development and yield formation factors. Economic and environmental benefits of PA implementation in crop production depend on the possibility to evaluate the degree of within-field variability of those environmental parameters, which are important for crop development. In this context, the development of identification methods allowing to find the within-field variability of different parameters and to mark the borders between differently managed areas within each agricultural field is of great significance. Relevant basic algorithm for such a method and its implementation diagram are presented in the paper. The within-field variability detection and border marking is based on hyperspectral images and optical criteria (reflection indexes), characterizing specific and non-specific features of crop canopy spectral characteristics under the impact of various stress factors. To confirm the feasibility of the algorithm the changes of plant optical characteristics have been studied. A list of reflection indexes and a set of quantity indicators for each criterion have been obtained for spring wheat physiological condition under optimum environmental parameters and in the conditions of nitrogen and water deficiency. The experiment was conducted under controlled conditions to eliminate possible impacts of other environmental factors on the plants. Significant differences in optical characteristics of the plants affected by nitrogen and water deficiency compared to those with no stress confirmed the reliability of the offered algorithm. The obtained results open new possibilities to automate the process of satellite data interpretation for precision agriculture, initiate research projects where optical criteria for other environmental stress factors might be found. The algorithm realization and the information resource of the IKI-Monitoring center in the nearest future will significantly widen the application of the new method into practice of precision agriculture.
Keywords: Keywords: precision agriculture, remote sensing, optical criteria of plants, nitrogen and water deficiency, the algorithm of within-field variability delineation
Full text

References:

  1. Blokhina S. Yu., Primenenie distantsionnogo zondirovaniya v tochnom zemledelii (Remote sensing application in precision agriculture), Vestnik Rossiiskoi sel’skokhozyaistvennoi nauki, 2018, No. 5, pp. 10–16.
  2. Bure V. M., Metodologicheskie aspekty statisticheskogo analiza v tochnom zemledelii (Methodological aspects of statistical analysis in precision agriculture), Doklady Rossiiskoi akademii sel’skokhozyaistvennykh nauk, 2007, No. 6, pp. 54–56.
  3. Bure V. M., Petrushin A. F., Yakushev V. V., Avtomatizirovannaya sistema stokhasticheskogo vydeleniya odnorodnykh tekhnologicheskikh zon na sel’skokhozyaistvennom pole po dannym urozhainosti (Automated system for stochastic separation of homogeneous technological zones on an agricultural field according to yield data), Certificate of state registration of software No. 20008614663 (RU), Reg. 29.09.2008.
  4. Kanash E. V., Yakushev V. P., Osipov Yu. A., Rusakov D. V., Blokhina S. Yu., Kravtsova A. V., Opticheskie kharakteristiki list’ev yarovoi pshenitsy pri defitsite azota i vody (Optical characteristics of the spring wheat leaves under the nitrogen and water deficiency conditions), Vestnik rossiiskoi sel’skokhozyaistvennoi nauki, 2017, No. 4, pp. 9–12.
  5. Loupian E. A., Burtsev M. A., Proshin A. A., Kobets D. A., Razvitie podkhodov k postroeniyu informatsionnykh sistem distantsionnogo monitoringa (Evolution of remote monitoring information systems development concepts), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 53–66, DOI:.10.21046/2070-7401-2018-15-3-53-66.
  6. Yakushev V. P., Yakushev V. V., Informatsionnoe obespechenie tochnogo zemledeliya (Information support for precision farming), Saint Petersburg: Izd. PIYaF RAN, 2007, 384 p.
  7. Yakushev V. P., Bure V. M., Yakushev V. V., Vydelenie odnorodnykh zon na pole po urozhainosti otdel’nykh uchastkov (Selection of homogeneous zones on the field according to the yield of individual sections), Doklady Rossiiskoi akademii sel’skokhozyaistvennykh nauk, 2007, No. 3, pp. 33–37.
  8. Drozdova I. S., Pustovoitova T. N., Dzhibladze T. G., Barabanshchikova N. S., Zhdanova N. E., Maevskaya S. N., Bukhov N. G., Endogenous control of photosynthetic activity during progressive drought: influence of final products of photosynthesis, Russian J. Plant Physiology, 2004, No. 51, pp. 668–675.
  9. Kanash E. V., Osipov Y. A., Optical signals of oxidative stress in crops physiological state diagnostics, Proc. 7th European Conf. Precision Agriculture (ECPA), Wageningen, Netherlands, 2009, pp. 81–89, DOI: 10.3920/978-90-8686-664-9.
  10. Nikolaeva M. K., Maevskaya S. N., Shugaev A. G., Bukhov N. G., Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity, Russian J. Plant Physiology, 2010, No. 57, pp. 87–95.
  11. Yakushev V., Kanash E., Rusakov D., Blokhina S., Specific and non-specific changes in optical characteristics of spring wheat leaves under nitrogen and water deficiency, Advances in Animal Biosciences: Papers presented at the 11th European Conf. Precision Agriculture (ECPA), Edinburgh, UK, 16–20 July, 2017, The Animal Consortium, 2017, Vol. 8, Special Issue 2, pp. 229–232, DOI: 10.1017/S204047001700053X.