Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 3, pp. 125-139
Digital mapping of spring wheat yield based on vegetation indices and estimation of its changes depending on the properties of anthropogenically transformed soils
N.V. Gopp
1 , O.А. Savenkov
1 , A.V. Smirnov
2 1 Institute of Soil Science and Agrochemistry SB RAS, Novosibirsk, Russia
2 Altai State University, Barnaul, Russia
Accepted: 28.05.2019
DOI: 10.21046/2070-7401-2019-16-3-125-139
A comparative estimation of informativeness of vegetation indices NDVI, EVI, RVI, CTVI, SAVI, and MSAVI2 for digital mapping of yield of spring wheat grown in the southeast of Western Siberia is carried out. Using the obtained linear models, forecast maps of spring wheat yield were constructed, for which the data of spatial distribution of vegetation indices calculated by the Landsat-8 OLI satellite image (30 m resolution) had been served as an indicator and basic cartographic ground. Comparative analysis of the maps showed that the results of yield mapping based on vegetation indices NDVI, RVI, CTVI, SAVI, and MSAVI2 were identical. The results of mapping of spring wheat yield with the use of the vegetation index EVI were unsatisfactory, since in the area with sparse crops the values for yield were overstated by 2 times. The spring wheat productivity and vegetation indices were not statistically significantly different for the agro-dark-gray soil and agro-chernozems. The correlations were significant between the spring wheat yield and vegetation indices on the one hand, and pre-sowing water content and the content of exchangeable potassium on the other hand, while for humus the correlations were moderate. Insufficient pre-sowing water content of soils was a restrictive factor in the formation of spring wheat yield and did not allow agrochemical properties of soils to produce an effect in its increasing.
Keywords: vegetation indices, yield of spring wheat, Landsat-8 OLI, digital mapping, RVI, NDVI, CTVI, EVI, SAVI, MSAVI2, nitrogen, phosphorus, humus, potassium, pre-sowing water content, moisture
Full textReferences:
- Agrokhimicheskie metody issledovaniya pochv (Agrochemical methods of soil investigation), Moscow: Nauka, 1975, 656 p.
- Antonov V. N., Sladkikh L. A., Monitoring sostoyaniya posevov i prognozirovanie urozhainosti yarovoi pshenitsy po dannym DZZ (Monitoring the condition of crops and forecasting the yield of spring wheat according to remote sensing data), Geomatika, 2009, No. 4, pp. 50–53.
- Gopp N. V., Modelirovanie zapasov nadzemnoi fitomassy tundrovykh soobshchestv rastenii s ispol’zovaniem nazemnykh i sputnikovykh dannykh (Modeling of aboveground phytomass reserves of tundra plant communities using field and satellite data), Gornyi informatsionno-analiticheskii byulleten’, 2009, Vol. 17, No. 12, pp. 200–205.
- Gopp N. V., Algoritmicheskii podkhod pri sostavlenii tsifrovykh pochvennykh kart na osnove laboratorno-polevykh i sputnikovykh dannykh (Algorithmic approach to digital soil mapping based on laboratory-field and satellite data), Issledovanie Zemli iz kosmosa, 2013, No. 3, pp. 58–72.
- Gopp N. V., Savenkov O. A., Smirnov A. V., Diagnostika prichin neravnomernoi urozhainosti yarovoi pshenitsy (Diagnostics of causes of the non-uniform of crop spring wheat), Pochvennye resursy Sibiri: vyzovy XXI veka (Soil resources of Siberia: the challenges of the XXI century), Proc. All-Russia Scientific Conf., 4–8 Dec., 2017, Novosibirsk, Part I, pp. 194–199.
- Evtyushkin A. V., Bryksin V. M., Rychkova N. V., Otsenka sostoyaniya rastitel’nykh pokrovov po dannym distantsionnogo zondirovaniya i podsputnikovykh eksperimentov (Assessment of vegetation cover status according to remote sensing and satellite experiments), Vestnik Altaiskogo gosudarstvennogo agrarnogo universiteta, 2010, No. 10(72), pp. 50–53.
- Klassifikatsiya i diagnostika pochv Rossii (Classification and diagnostics of soils of Russia), Smolensk: Oikumena, 2004, 342 p.
- Nichiporovich A. A., O putyakh povysheniya produktivnosti fotosinteza rastenii v posevakh (About ways of increase of productivity of photosynthesis of plants in crops), In: Fotosintez i voprosy produktivnosti rastenii (Photosynthesis and questions of productivity of plants), Moscow: AN SSSR, 1963, pp. 5–36.
- Orlov A. D., Eroziya i erozionnoopasnye zemli Zapadnoi Sibiri (Erosion and erosion-hazardous lands of Western Siberia), Novosibirsk: Nauka, 1983, 208 p.
- Polevoi opredelitel’ pochv Rossii (Field Guide for Correlation of Russian Soils), Moscow: Pochvennyi institut imeni V. V. Dokuchaeva, 2008, 182 p.
- Savin I., Bartalev S., Loupian E., Tolpin V., Khvostikov S., Prognozirovanie urozhainosti sel’skokhozyaistvennykh kul’tur na osnove sputnikovykh dannykh: vozmozhnosti i perspektivy (Crop yield forecasting based on satellite data: opportunities and perspectives), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 275–285.
- Spivak L. F., Vitkovskaya I. S., Batyrbaeva M. Zh., Kauazov A. M., Analiz rezul’tatov prognozirovaniya urozhainosti yarovoi pshenitsy na osnove vremennykh ryadov statisticheskikh dannykh i integral’nykh indeksov vegetatsii (Analysis of spring wheat yield forecasts based on time series of statistical data and integrated vegetation indices), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 2, pp. 173–182.
- Tolpin V. A., Loupian E. A., Bartalev S. A., Plotnikov D. E., Matveev A. M., Vozmozhnosti analiza sostoyaniya sel’skokhozyaistvennoi rastitel’nosti s ispol’zovaniem sputnikovogo servisa “VEGA” (Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service), Optika atmosfery i okeana, 2014, Vol. 27, No. 7, pp. 581–586.
- Cherepanov A. S., Druzhinina E. G., Spektral’nye svoistva rastitel’nosti i vegetatsionnye indeksy (Spectral properties of vegetation and vegetation indices), Geomatika, 2009, No. 3, pp. 28–32.
- Ahmadian N., Demattê J. A.M., Xu D., Borg E., Zölitz R., A New Concept of Soil Line Retrieval from Lands, Remote Sensing, 2016, No. 8, 738, pp. 1–23.
- Baret E., Guyot G., Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sensing of Environment, 1991, Vol. 35, pp. 161–173.
- Conrad O., Bechtel M., Bock M., Dietrich H., Fischer E., System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 2015, No. 7(8), pp. 1991–2007.
- Deering D. W., Rouse J. W., Haas R. H., Schell J. A., Measuring “forage production” of grazing units from LANDSAT MSS data, Proc. 10th Intern. Symp. Remote Sensing of Environment, Ann Arbor, Michigan, 1975, Vol. II, pp. 1169–1178.
- Gopp N. V., Savenkov O. A., Relationship between the NDVI, yield of spring wheat and properties of the plow horizon of eluviated clay-illuvial chernozems and dark gray soils, Eurasian Soil Science, 2019, Vol. 52, No. 3, pp. 339–347.
- Huete A. R., A Soil-Adjusted Vegetation Index (SAVI), Remote Sensing of Environment, 1988, Vol. 25, pp. 295–309.
- Huete A., Didan K., Miura T., Rodriguez E. P., Gao X., Ferreira L. G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 2002, Vol. 83, Issues 1–2, pp. 195–213.
- IUSS Working Group WRB, World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 2014, 181 p.
- Jackson R. D., Huete A. R., Interpreting vegetation indices, Preventive Veterinary Medicine, 1991, Vol. 11, Issues 3–4, pp. 185–200.
- Kauth R. J., Thomas G. S., The tasseled Cap ― A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT, Proc. Symp. Machine Processing of Remotely Sensed Data, Purdue University of West Lafayette, Indiana, 1976, pp. 4B-41–4B-51.
- Kriegler F. J., Malila W. A., Nalepka R. F., Richardson W., Preprocessing Transformations and Their Effects on Multispectral Recognition, Proc. 6th Intern. Symp. Remote Sensing of Environment, Vol. II, Ann Arbor, Michigan, USA, Environmental Research Institute of Michigan, 1969, pp. 97–131.
- Landsat surface reflectance-derived spectral indices, Product guide, Version 3.6, Geological Survey, Department of the Interior U. S., 2017, 31 p.
- Palosuo T., Kersebaum K. C., Angulo C., Hlavinka P., Moriondo M., Olesen J. E., Patil R. H., Ruget F., Rumbaur C., Takáč J., Trnka M., Bindi M., Çaldağ B., Ewert F., Ferrise R., Mirschel W., Şaylan L., Šiška B., Rötter R., Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models, European J. Agronomy, 2011, Vol. 35, No. 3, pp. 103–114.
- Perry C. Jr., Lautenschlager L. F., Functional Equivalence of Spectral Vegetation Indices, Remote Sensing and the Environment, 1984, Vol. 14, pp. 169–182.
- Qi J., Chehbouni A., Huete A. R., Kerr Y. H., Sorooshian A., A Modified Soil Adjusted Vegetation Index, Remote Sensing of Environment, 1994, Vol. 48(2), pp. 119–126.
- Richardson A. J., Wiegand C. L., Distinguishing Vegetation from Soil Background Information, Photogramnetric Engineering and Remote Sensing, 1977, Vol. 43(12), pp. 1541–1552.
- Rouse J. W., Haas R. H., Schell J. A., Deering D. W., Monitoring vegetation systems in the great plains with ERTS, Proc. 3rd ERTS Symp., Washington, USA, NASA, 1973, Vol. I, pp. 309–317.
- Rouse J. W., Haas Jr. R. H., Deering D. W., Schell J. A., Harlan J. C., Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, NASA/GSFC Type III Final Report, Greenbelt, MD, 1974, 371 p.
- Silleos N. G., Alexandridis T. K., Gitas I. Z., Perakis K., Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years, Geocarto Intern., 2006, Vol. 21(4), pp. 21–28.