ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 227-243

Features of river plume parameter determination by in situ and remote sensing methods

K.R. Nazirova 1 , O.Yu. Lavrova 1 , E.V. Krayushkin 1 , D.M. Soloviev 2 , E.V. Zhuk 2 , Ya.O. Alferyeva 3 
1 Space Research Institute RAS, Moscow, Russia
2 Marine Hydrophysical Institute RAS, Sevastopol, Russia
3 Lomonosov Moscow State University, Moscow, Russia
Accepted: 05.04.2019
DOI: 10.21046/2070-7401-2019-16-2-227-243
The paper presents the results of measurements of plume parameters of the Mzymta River conducted in April 2018 concurrently with satellite imaging. From the data of Sentinel-2 MSI, Landsat-8 OLI and Sentinel-3 OLCI instruments, the total suspended matter content was determined by standard algorithms and compared with that measured in situ using a turbidity meter and water sampling. It is shown that values of suspended matter concentration determined from satellite data approximately coincide with those measured in situ only in the region of the marginal filter. A sharp frontal boundary, distinguished from in situ measurements, was located at a distance of no more than 500 m from the river mouth, farther seaward suspended matter concentration fell almost 10 times. The values of this parameter, obtained from satellite data, changed gradually almost to the visible boundary of the plume. The results of in situ measurements also made it possible to assess the validity of the spatial characteristics of plumes obtained from satellite data. Plume areas and the maximum distance of the plume edge from the coastline were estimated. The dependence of the plume area on water level in the river was considered. The outer boundary of the plume that appears in visible satellite data due to the optical differences of sea and turbid river waters is not as clearly observed in in situ measurements of temperature, salinity and turbidity. At the same time, in situ measurements make it possible to detect spatial inhomogeneities in the plume that are not distinguishable in satellite data. From the in situ measurements, the depth of river water intrusion into the sea was determined, which did not exceed 3–4 m.
Keywords: river plume, ocean color satellite data, in situ measurements, total suspended matter, MSI Sentinel-2, OLI Landsat-8, Mzymta, Black Sea
Full text

References:

  1. Dzhaoshvili Sh., Rivers of the Black Sea, Technical Report No. 71, European Environment Agency, 2010, 58 p.
  2. Zhurbas V. M., Zavialov P. O., Sviridov A. S., Lyzhkov D. A., Andrulionis E. E., On transport of small river run-off by a longshore baroclinic sea current, Oceanology, 2011, Vol. 51, No. 3, pp. 415–423.
  3. Zavialov P. O., Makkaveev P. N., Konovalov B. V., Osadchiev A. A., Khlebopashev P. V., Pelevin V. V., Grabovskiy A. B., Izhitskiy A. S., Goncharenko I. V., Soloviev D. M., Polukhin A. A., Hydrophysical and hydrochemical characteristics of the sea areas adjacent to the estuaries of small rivers of the Russian coast of the Black Sea, Oceanology, 2014, Vol. 54, No. 3, pp. 265–280.
  4. Korotkina O. A., Zavialov P. O., Osadchiev A. A., Synoptic variability of currents in the coastal zone of Sochi, Oceanology, 2014, Vol. 54, No. 5, pp. 545–556.
  5. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAN, 2016, 335 p.
  6. Lisitzin A. P., A marginal filter of the oceans, Oceanology, 1994, Vol. 34, No. 5, pp. 735–747.
  7. Loupian E. A., Matveev A. A., Uvarov I. A., Bocharova T.Yu., Lavrova O. Yu., Mityagina M. I., Sputnikovyi servis See The Sea — instrument dlya izucheniya protsessov i yavlenii na poverkhnosti okeana (Satellite service See The Sea — a tool for investigation of processes and phenomena at the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251–261.
  8. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  9. Da Silva J. C. B., New A. L., Srokosz M. A., Smyth T. J., On the observability of internal tidal waves in remotely-sensed ocean colour data, Geophysical Research Letters, 2002, Vol. 29, No. 12, DOI: 10.1029/2001GL013888.
  10. Doxaran D., Lamquin N., Park Y. J., Mazeran C., Ryu J. H., Wang M., Poteau A., Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data, Remote Sensing Environment, 2013, Vol. 146, pp. 36–48.
  11. Gernez P., Lafon V., Lerouxel A., Curti C., Lubac B., Cerisier S., Barille L., Toward Sentinel-2 high resolution remote sensing of suspended particulate matter in very turbid waters: SPOT4 (Take5) Experiment in the Loire and Gironde Estuaries, Remote Sensing, 2015, Vol. 7, pp. 9507–9528.
  12. Lavrova O., Mityagina M., Satellite survey of internal waves in the Black and Caspian Seas, Remote Sensing, 2017, Vol. 9, Issue 9, p. 892, DOI: 10.3390/rs9090892.
  13. Lavrova O. Y., Mityagina M. I., Serebryany A. N., Sabinin K. D., Kalashnikova N. A., Krayushkin E. V., Khymchenko I., Internal waves in the Black Sea: satellite observations and in-situ measurements, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2014, Vol. 9240, ID. 924016, DOI: 10.1117/12.2067047.
  14. Lavrova O. Yu., Soloviev D. M., Strochkov M. A., Bocharova T. Yu., Kashnitsky A. V., River plumes investigation using Sentinel-2A MSI and Landsat-8 OLI data, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proc. SPIE, 2016, Vol. 9999, ID. 99990G, DOI: 10.1117/12.2241312.
  15. Miller R. L., McKee B. A., Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters, Remote Sensing Environment, 2004, Vol. 93, pp. 259–266.
  16. Nash J. D., Moum J. N., River plumes as a source of large-amplitude internal waves in the coastal ocean, Nature, 2005, Vol. 437, pp. 400–403.
  17. Ody A., Doxaran D., Vanhellemont Q., Nechad B., Novoa S., Many G., Bourrin F., Verney R., Pairaud I., Gentili B., Potential of High Spatial and Temporal Ocean Color Satellite Data to Study the Dynamics of Suspended Particles in a Micro-Tidal River Plume, Remote Sensing, 2016, Vol. 8, p. 245, DOI:10.3390/rs8030245.
  18. Pan J., Jay D. A., Orton P. M., Analyses of internal solitary waves generated at the Columbia River plume front using SAR imagery, J. Geophysical Research, 2007, Vol. 112, C07014.
  19. Stashchuk N., Vlasenko V., Generation of internal waves by a supercritical stratified plume, J. Geophysical Research, 2009, Vol. 114, C01004.
  20. Warrick J. A., Mertes L. A. K., Siegel D. A., Mackenzie C., Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS, Remote Sensing, 2004, Vol. 25, pp. 1995–2002.
  21. Zajączkowski M., Darecki M., Szczuciński W., Report on the development of the Vistula river plume in the coastal waters of the Gulf of Gdansk during the May 2010 flood, Oceanologia, 2010, Vol. 52(2), pp. 311–317.