ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 247-258

The role of ozone layer in the formation of winter jet stream in the middle atmosphere

B.G. Shpynev 1 , D.S. Khabituev 1 , M.A. Chernigovskaya 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 11.03.2019
DOI: 10.21046/2070-7401-2019-16-2-247-258
We consider physical mechanisms responsible for forming plain-layered jet-streams in the winter stratosphere. The jet-streams transport energy and pulse from the equatorial region into the polar region and provide the Brewer-Dobson global circulation. Unlike the conventional notion about the balance between the energy of the solar UV radiation energy absorbed by the stratospheric ozone within the Hartley band and the energy of loss due to the infrared emission from CO2, O3, and H2O molecules, such a balance is shown not to persist. The bias of these energies observed in satellite experiments has a well-defined physical explanation in the form of the dynamic mechanism increasing the air gravity potential in the tropical stratosphere and forming equator/winter pole baroclinic instability, which generates the jet stream. Jet streams transport energy and pulse from equatorial to polar region and facilitate the descending part of the Brewer-Dobson global circulation. The potential energy release, when the stratospheric jet-stream lowers, is ~1018 W/day, the air mass transported by the jet-stream to the tropopause region is estimated as being ~1014 kg/day. Based on the ECMWF ERA-Interim reanalysis data, we analyzed the motion of the stratospheric air sample particle from the region of gravity potential abundance generation at the summer ozone layer altitudes (40–50 km) to the winter tropopause altitudes, where the stratospheric air ends its motion, thus participating in the cyclogenesis. Duration of the descending part of the Brewer-Dobson circulation in the winter stratosphere/troposphere averages 50–70 days.
Keywords: middle atmosphere circulation, stratospheric jet-stream, energy balance in the stratosphere and troposphere, Brewer-Dobson circulation
Full text

References:

  1. Vargin P. N., Medvedeva I. V., Temperature and Dynamical Regimes of the Northern Hemisphere Extratropical Atmosphere during Sudden Stratospheric Warming in Winter 2012–2013, Izvestiya. Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 1, pp. 12–29, DOI: 10.1134/S0001433814060176.
  2. Shpynev B. G., Chernigovskaya M. A., Khabituev D. S., Spektral’nye kharakteristiki atmosfernykh voln, generiruemykh zimnim stratosfernym struinym techeniem severnogo polushariya (Spectral characteristics of atmospheric waves generated by winter stratospheric jet stream in the Northern Hemisphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 120–131, DOI: 10.21046/2070-7401-2016-13-2-120-131.
  3. Baldwin M. P., Dunkerton T. J., Stratospheric harbingers of anomalous weather regimes, Science, 2001, Vol. 294, pp. 581–584.
  4. Brasseur G., Solomon S., Aeronomy of the Middle Atmosphere, Dordrecht: Springer, 2005, 644 p.
  5. Cohen N. Y., Gerber E. P., Bühler O., Compensation between resolved and unresolved wave driving in the stratosphere: Implications for downward control, J. Atmospheric Sciences, 2013, Vol. 70, No. 12, pp. 3780–3798.
  6. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Hólm E. V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 553–597, DOI: 10.1002/qj.828.
  7. Gille J. C., Russell J. M. III, The limb infrared monitor of the stratosphere: Experiment description, performance, and results, J. Geophysical Research, 1984, Vol. 89, pp. 5125–5140.
  8. Kolstad E., Breiteig T., Scaife A., The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere, Quarterly J. Royal Meteorological Society, 2010, Vol. 136, pp. 886–893.
  9. Labitzke K., On the Mutual Relation between Stratosphere and Troposphere during Periods of Stratospheric Warmings in Winter, J. Applied Meteorology and Climatology, 1965, Vol. 4, pp. 91–99.
  10. Liu H.-L., Roble R. G., A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophysical Research, 2002, Vol. 107, No. D23, 4695, DOI: 10.1029/2001JD001533.
  11. Matsuno T., A dynamic model of the stratospheric sudden warming, J. Atmospheric Sciences, 1971, Vol. 28, pp. 1479–1494, DOI: 10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.
  12. Maute A., Hagan M. E., Yudin V., Liu H., Yizengaw E., Causes of the longitudinal differences in the equatorial vertical E × B drift during the 2013 SSW period as simulated by the TIME-GCM, J. Geophysical Research Space Physics, 2015, pp. 1–20, DOI: 10.1002/2015JA021126.
  13. Mlynczak M. G., Mertens C. J., Garcia R. R., Portman R. W., A detailed evaluation of the stratospheric heat budget, 2. Global radiation balance and diabatic circulations, J. Geophysical Research, 1999, Vol. 104, pp. 6039–6066.
  14. Namias J., Seasonal persistence and recurrence of European blocking during 1958–1960, Tellus, 1964, Vol. 16, pp. 394–407.
  15. Pogoreltsev A. I., Vlasov A. A., Fröhlich K., Jacobi Ch., Planetary waves in coupling the lower and upper atmosphere, J. Atmospheric and Solar-Terrestrial Physics, 2007, Vol. 69, pp. 2083–2101, DOI: 10.1016/j.jastp.2007.05.014.
  16. Reber C. A., Trevathan C. E., McNeal R. J., Luther M. R., The Upper Atmosphere Research Satellite (UARS) mission, J. Geophysical Research, 1993, Vol. 98, pp. 10643–10647.
  17. Richmond A. D., Ridley E. C., Roble R. G., A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophysical Research Letters, 1992, Vol. 6, pp. 601–604.
  18. Shpynev B. G., Churilov S. M., Chernigovskaya M. A., Generation of waves by jet stream instabilities in winter polar stratosphere/mesosphere, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 201–215, DOI: 10.1016/j.jastp.2015.07.005.
  19. Taguchi M., Is There a Statistical Connection between Stratospheric Sudden Warming and Tropospheric Blocking Events? J. Atmospheric Sciences, 2008, Vol. 65, No. 4, pp. 1442–1454.
  20. Thompson D. W. J., Baldwin M. P., Wallace J. M., Stratospheric connection to Northern Hemisphere wintertime weather: Implications for predictions, J. Climate, 2002, Vol. 15, pp. 1421–1428.
  21. Tomassini L., Gerber E. P., Baldwin M. P., Bunzel F., Giorgetta M., The role of stratosphere troposphere coupling in the occurrence of extreme winter cold spells over northern Europe, J. Advances in Modeling Earth Systems, 2012, Vol. 4, M00A03, DOI: 10.1029/2012MS000177.
  22. Yiğit E., Aylward A. D., Medvedev A. S., Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophysical Research, 2008, Vol. 113, D19106, DOI: 10.1029/2008JD010135.
  23. Yiğit E., Knížova P. K., Georgieva K., Ward W., A review of vertical coupling in the Atmosphere–Ionosphere system: Effects of waves, sudden stratospheric warmings, space weather, and of solar activity, J. Atmospheric and Solar-Terrestrial Physics, 2016, Vol. 141, pp. 1–12, DOI: 10.1016/j.jastp.2016.02.011.