ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 87-97

Evaluation of underlying surface temperature maps on logging sites using Landsat data

K.V. Krasnoshchekov 1, 2 , A.V. Dergunov 1, 2 , E.I. Ponomarev 1, 3 
1 Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk, Russia
2 Institute of Computational Modelling SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk, Russia
3 V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk, Russia
Accepted: 01.04.2019
DOI: 10.21046/2070-7401-2019-16-2-87-97
The long-term response in vegetation spectral signatures after anthropogenic impact was observed on satellite imagery not only in «vegetation» channels but in IR range as well. In this paper the dynamics of exceeding underlying surface temperatures was considered for local areas of logging in comparison with background values. The study was performed for pine forests of the Priangarie region (Krasnoyarskiy Krai) mainly using Landsat 5 / TM and Landsat 8 / OLI data for vegetation seasons of 2000–2017. It has been established that high surface temperatures at logging sites kept for at least 15 years, and the difference between them and background values (3–7°C) was at least 10 % during succession processes. The rate of temperature anomalies and NDVI indices leveling was analyzed at logging sites comparing with the background values for the considered period (17 years), which is determined by the processes of vegetation restoration. Wildfires should be considered as a limiting factor for both temperature regime restoration and NDVI of underlying surface.
Keywords: logging sites, underlying surface, spectral characteristics, temperature, NDVI, Landsat, vegetation cover, thermal map, wildfire
Full text

References:

  1. Bartalev S. A., Khovratovich T. S., Elsakov V. V., Ispol’zovanie sputnikovykh izobrazhenii dlya otsenki poter’ ugleroda lesnymi ekosistemami v rezul’tate vyrubok (Estimation of carbon losses in a forest ecosystem caused by logging with the use of satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Issue 6, Vol. 2, pp. 343–351.
  2. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Satellite Mapping of Vegetation Cover Russia), Moscow: IKI RAN, 2016, 208 p.
  3. Bogdanov A. P., Karpov A. A., Demina N. A., Aleshko R. A., Sovershenstvovanie monitoringa lesov putem ispol’zovaniya oblachnykh tekhnologii kak elementa ustoichivogo lesoupravleniya (Improving forest monitoring by using cloud technologies as an element of sustainable forest management), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 89–100.
  4. Ivanov V. A., Ivanova G. A., Moskalchenko S. A., Korshunov N. A., Ponomarev E. I., Svyaz’ chastoty lesnykh pozharov so stepen’yu narushennosti lesnykh territorii Nizhnego Priangar’ya (The relationship of the frequency of forest fires with the degree of disturbance of forest areas of the Lower Angara region), Lesnoe khozyaistvo, 2011, No. 1, pp. 39–41.
  5. Kashkin V. B., Sukhinin A. I., Distantsionnoe zondirovanie Zemli iz kosmosa. Tsifrovaya obrabotka izobrazhenii (Remote sensing of the Earth from space. Digital image processing), Moscow: Logos, 2001, 246 p.
  6. Loupian E. A., Bartalev S. A., Balashov I. V., Egorov V. A., Ershov D. V., Kobets D. A., Senko K. S., Stytsenko F. V., Sychugov I. G., Sputnikovyi monitoring lesnykh pozharov v XX veke na territorii Rossiiskoi Federatsii (tsifry i fakty po dannym detektirovaniya aktivnogo goreniya) (Satellite monitoring of forest fires in the XX century on the territory of the Russian Federation (figures and facts according to active combustion detection)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 6, pp. 158–175.
  7. Ponomarev E. I., Shvetsov E. G., Sputnikovoe detektirovanie lesnykh pozharov i geoinformatsionnye metody kalibrovki rezul’tatov (Satellite detection of forest fires and geo-information methods for calibrating results), Issledovanie Zemli iz kosmosa, 2015, No. 1, pp. 84–91.
  8. Ponomarev E. I., Ponomareva T. V., Distantsionnyi monitoring poslepozharnykh effektov v kriolitozone Srednei Sibiri (Remote monitoring of post-fire effects in the permafrost zone of Central Siberia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 85–95.
  9. Kharuk V. I., Ponomarev E. I., Prostranstvenno-vremennaya gorimost’ listvennichnikov Tsentral’noi Sibiri (Spatio-temporal incidence of larch forests in Central Siberia), Ekologiya, 2017, No. 6, pp. 413–419.
  10. Zhang S. A., Runova E. M., Puzanova O. A., Zhang L. A., Zakonomernosti rosta i razvitiya drevostoev v usloviyakh Priangar’ya (Regularities of growth and development of tree stands in the conditions of the Angara region), Sistemy. Metody. Tekhnologii, 2012, No. 4, pp. 166–170.
  11. Conard S. G., Sukhinin A. I., Stocks B. J., Cahoon D. R., Davidenko E. P., Ivanova G. A., Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia, Climatic Change, 2002, Vol. 55, No. 1–2, pp. 197–211.
  12. Flannigan M., Stocks B., Turetsky M., Wotton M., Impacts of climate change on fire activity and fire management in the circumboreal forest, Global Change Biology, 2009, Vol. 15, No. 3, pp. 549–560.
  13. Forkel M., Thonicke K., Beer C., Cramer W., Bartalev S., Schmullius C., Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia, Environmental Research Letters, 2012, Vol. 7, No. 4, 9 p.
  14. Huttich C., Stelmaszczuk-Gorska M. A., Eberle J., Kotzerke P., Schmullius C., Operational forest monitoring in Siberia using multi-source earth observation data, Siberian J. Forest Science, 2014, Vol. 1, No. 5, pp. 38–52.
  15. Jimenez-Munoz J. C., Sobrino J. A., Skokovic D., Mattar C., Cristobal J., Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data, IEEE Geoscience and Remote Sensing Letters, 2014, Vol. 11, No. 10, pp. 1840–1843.
  16. Kukavskaya E. A., Buryak L. V., Ivanova G. A., Conard S. G., Kalenskaya O. P., Zhila S. V., McRae D. J., Influence of logging on the effects of wildfire in Siberia, Environmental Research Letters, 2013, No. 8, 11 p.
  17. Mishra N., MdHaque O., Leigh L., Aaron D., Helder D., Markham B., Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Remote Sensing, 2014, No. 6, pp. 12619–12638.
  18. Ponomarev E. I., Kharuk V. I., Ranson K. J., Wildfires dynamics in Siberian larch forests, Forests, 2016, Vol. 7, No. 6, 125 p.
  19. Shvidenko A. Z., Schepaschenko D. G., Climate change and wildfires in Russia, Contemporary Problems of Ecology, 2013, Vol. 6, No. 7, pp. 683–692.
  20. Zanter K., Landsat 8 (L8) data users handbook: Version 3.0, Sioux Falls, South Dakota: EROS, 2018, 106 p. Available at: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook.pdf (Jan. 24, 2019).