ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 2, pp. 186-195

Verification of VGPM and K&I models of primary production in the northwestern part of the Japan Sea using shipboard and satellite data

Yu.V. Shambarova 1 , I.E. Stepochkin 1 , S.P. Zakharkov 1 
1 V.I. Il`ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 18.03.2019
DOI: 10.21046/2070-7401-2019-16-2-186-195
Presented study examines the possibility of use of the VGPM and K&I models of net primary production (PP) in the coastal water areas of the North-Western Japan Sea. Field measurements of PP and other bio-optical parameters of water were taken. In situ data include concentrations of chlorophyll a (CHL) and NPP, obtained with a reference methods, as well as sea surface temperature (SST), photosynthetically active radiation (PAR) at the surface and euphotic depth (Zeu), obtained with a submersible profiler. Also data of remote sensing reflectance spectra (RRS), obtained with a portable spectroradiometer ASD FieldSpec HandHeld throughout the ship’s route was used. Comparison with a data of ocean color satellite scanner MODIS-Aqua (CHL, PAR, SST, NPP, Zeu; Level-3, 4-km regular grid) was held. Shortcomings of VGPM and K&I models were shown and some approaches for elaboration of regional model of NPP were offered. It’s necessary to consider the water area’s regional specialties and features of Case-2 waters, photosynthetic patterns of phytoplankton and estimation errors of satellite scanners in particular.
Keywords: net primary production, phytoplankton, ocean remote sensing, VGPM, chlorophyll a
Full text

References:

  1. Vedernikov V. I., Konovalov B. V., Koblents-Mishke O. I., Rezul’taty primeneniya spektrofotometricheskogo metoda opredeleniya feofitina-a v probakh morskoi vody (Results of application of spectrophotometric method of pheophytin-a determination in sea water samples), Trudy IOAN SSSR, Moscow, 1973, Vol. 95, pp. 138–146.
  2. Zakharkov S. P., Shambarova Yu. V., Gordeichuk T. N., Stonik I. V., Shtraikhert E. A., Vozmozhnost’ ispol’zovaniya dannykh zonda SBE dlya kalibrovki sputnikovykh dannykh kontsentratsii khlorofilla a v Yaponskom more (Possibility of using SBE profilometer data for calibration of satellite data on concentration of chlorophyll a in the Japan Sea), Izvestiya TINRO, 2014, Vol. 177, pp. 209–218.
  3. Zakharkov S. P., Vladimirov A. S., Shtraikhert E. A., Shi S., Gladkikh R. V., Buzoleva L. S., Produktsionnye kharakteristiki bakterii i fitoplanktona v vesenne-letnii period v Okhotskom i Beringovom moryakh (Production characteristics of bacteria and phytoplankton in the Sea of Okhotsk and Bering Sea during spring–summer), Mikrobiologiya, 2017, Vol. 86, No. 3, pp. 364–372.
  4. Zuenko Yu. I., Promyslovaya okeanologiya Yaponskogo morya (Fisheries Oceanography of the Japan Sea), Vladivostok: TINRO-tsentr, 2008, p. 227.
  5. Koblents-Mishke O. I., Ekstraktnyi i bezekstraktnyi metody opredeleniya fotosinteticheskikh pigmentov v probe (Extractive and non-extactive methods for determining photosynthetic pigments in the sample), Sovremennye metody kolichestvennoi otsenki raspredeleniya morskogo planktona, Moscow: Nauka, 1983, pp. 114–125.
  6. Kovaleva I. V., Sravnenie algoritmov rascheta pervichnoi produktsii Chernogo morya po kontsentratsii khlorofilla v poverkhnostnom sloe, intensivnosti solnechnoi radiatsii i temperatury (Comparison of calculation algorithms of primary production in the Black Sea on concentration of chlorophyll in surface layer, to intensity radiation of sun and temperature), Morskoi ekologicheskii zhurnal, 2010, Vol. 9, No. 2, pp. 62–73.
  7. Lobanova P. V., Zvalinskii V. I., Tishchenko P. Ya., Pervichnaya produktsiya fitoplanktona i kontsentratsiya khlorofilla-a v zapadnoi chasti Yaponskogo morya po sputnikovym i naturnym dannym (Primary production of phytoplankton and concentration of chlorophyll-a in the western part of the Japan/East Sea from remote sensing and field data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 135–147.
  8. Salyuk P. A., Stepochkin I. E., Golik I. A., Bukin O. A., Pavlov A. N., Aleksanin A. I., Razrabotka empiricheskikh algoritmov vosstanovleniya kontsentratsii khlorofilla-a i okrashennykh rastvorennykh organicheskikh veshchestv dlya Dal’nevostochnykh morei iz distantsionnykh dannykh po tsvetu vodnoi poverkhnosti (Development of empirical algorithms for chlorophyll a and colored dissolved organic matter concentrations estimation from water remote sensed data in the Far Eastern Seas), Issledovanie Zemli iz kosmosa, 2013, No. 3, pp. 45–45.
  9. Sorokin Yu. I., Pervichnaya produktsiya v Okhotskom more (Primary production in the Sea of Okhotsk), In: Kompleksnye issledovaniya ekosistemy Okhotskogo morya (Complex Studies of Ecosystem of the Sea of Okhotsk), Moscow: Izd. VNIRO, 1997, pp. 103–110.
  10. An N. T., Son V. D., Primary production models and the problem of estimation of their parameters in various conditions of the water column, Russian J. Marine Biology, 2010, Vol. 36, No. 2, pp. 139–146.
  11. Behrenfeld M. J., Falkowski P. G., Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 1997, Vol. 42, No. 1, pp. 1–20.
  12. Gordon H. R., McCluney W. R., Estimation of the depth of sunlight penetration in the sea for remote sensing, Applied Optics, 1975, Vol. 14, pp. 413–416.
  13. Kameda T., Ishizaka J., Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, J. Oceanography, 2005, Vol. 61, No. 4, pp. 663–672.
  14. Kim S.-W., Saitoh S.-I., Ishizaka J., Isoda Y., Kishino M., Temporal and spatial variability of phytoplankton pigment concentration in the Japan Sea derived from CZCS images, J. Oceanography, 2000, Vol. 56, No. 5, pp. 527–538.
  15. Lee Y. J., Matrai P. A., Friedrichs M. A., Saba V. S., Ardyna D. A.M., Asanuma I., Marcel Bélanger B. S., Benoît-Gagné M., Devred M., Fernández-Méndez M., Gentili B., Hirawake T., Kang S-H., Kameda T., Katlein C., Lee S. H., Lee Z., Mélin F., Scardi M., Tim J., Tang S. S., Turpie K. R., Waters K. J., Westberry T. K., An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll-a based models, J. Geophysical Research: Oceans, 2015, Vol. 120, No. 9, pp. 6508–6541.
  16. Milutinović S., Bertino L., Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity, Remote Sensing of Environment, 2011, Vol. 115, No. 8, pp. 1906–1917.
  17. Mueller J. L., Curtiss D., Arnone R., Frouin R., Carder K., Above-water radiance and remote sensing reflectance measurement and analysis protocols, Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, 2003, Vol. 30, pp. 21–30.
  18. Olita A., Sorgente R., Ribotti A., Fazioli L., Perill A., Pelagic primary production in the Algero-Provencal Basin by means of multisensor satellite data: focus on interannual variability and its drivers, Ocean Dynamics, 2011, Vol. 61, No. 7, pp. 1005–1016.
  19. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters. IOCCG Report No. 3, Sathyendranath S. (ed.), 2000, 140 p.
  20. Silsbe G. M., Behrenfeld M. J., Halsey K. H., Milligan A. J., Westberry T. K., The CAFE model: A net production model for global ocean phytoplankton, Global Biogeochemical Cycles, 2016, Vol. 12, pp. 1756–1777.
  21. Tripathy S. C., Ishizaka J., Siswanto E., Shibata T., Mino Y., Modification of the vertically generalized production model for the turbid waters of Ariake Bay, southwestern Japan, Estuarine, Coastal and Shelf Science, 2012, Vol. 97, pp. 66–77.
  22. Yoon J. E., Park J., Yoo S., Comparison of primary productivity algorithms for Korean waters, Ocean Science J., 2012, Vol. 47, No. 4, pp. 473–487.