ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 95-104

Digital elevation model in the estimation of the probability of the erosion processes in the northern regions of the country

E.V. Polyakova 1 , Yu.G. Kutinov 1, 2 , A.L. Mineev 1 , Z.B. Chistova 1 
1 N.P. Laverov Federal Center for Integrated Arctic Research RAS, Arkhangelsk, Russia
2 Space Monitoring Center of the Arctic NARFU, Arkhangelsk, Russia
Accepted: 06.12.2018
DOI: 10.21046/2070-7401-2019-16-1-95-104
It is believed that exogenous processes take place slowly and are poorly reflected in relief forms in flat forest areas. However, the situation radically changes when the integrity of the vegetation cover is violated, which is inevitable with modern methods of economic development of the northern territories. In the paper, the authors estimated the probability of development of erosion processes on the basis of such geomorphometric relief parameters as the slope (Slope), LS factor (LS factor), relief dissection index (TRI) and topographic humidity index (TWI) calculated on the basis of a digital relief model Arkhangelsk region. After the procedure of generalization and cluster analysis, the study area was divided into three classes — the minimum, average and maximum values of the selected parameters. On the basis of combining the contours of cluster values of parameters in the study area, three zones were identified: with the greatest likelihood of development of erosion processes, corresponding to the zones of material demolition; with the possible manifestation of erosion processes corresponding to the transit zones of the material; with potential development of accumulative processes, corresponding to the zones of accumulation of material, including pollutants. In the accumulation zone, areas prone to flooding during floods and predisposed to waterlogging were identified. Identified on the basis of the geomorphometric analysis, the peculiarities of the territory should be taken into account when planning and implementing economic activities.
Keywords: digital elevation model, geomorphometric parameters, geomorphometric analysis, erosion processes
Full text

References:

  1. Gubaidullin M. G., Geoekologicheskie usloviya osvoeniya mineral’no-syr’evykh resursov Evropeiskogo Severa Rossii (Geoenvironmental conditions for the development of mineral resources in the European North of Russia), Arkhangelsk: Pomorskii gosudarstvennyi universitet, 2002, 310 p.
  2. Karta raionirovaniya territorii Rossii po stepeni ekstremal’nosti razvitiya ekologo-geomorfologicheskikh situatsii (Map of the regionalization of the territory of Russia in terms of the degree of extreme development of ecological-geomorphological situations), Kozlov A. E., Lokshin G. P., Chesnokov I. V. (eds.), Moscow: DMB, 2006.
  3. Kochkurkin N. V., Kutinov Yu. G., O vozmozhnosti primeneniya aerofotos″emki v ekologicheskikh tselyakh na territorii Arkhangel’skoi oblasti. Fakty i soobrazheniya (On the possibility of using aerial photography for environmental purposes in the Arkhangelsk region. Facts and considerations), In: Sever: ekologiya (North: Ecology), Ekaterinburg: UrO RAN, 2000, pp. 351–363.
  4. Kutinov Yu. G., Bogolitsyn K. G., Chistova Z. B., Issledovaniya severnykh territorii Zemli iz kosmosa: problemy, svoistva, sostoyanie, vozmozhnosti na primere MKS-Arktika (Studies of the northern territories of the Earth from space: problems, properties, state, opportunities by the example of the ISS-ArcticArctic: In 3 vol.), Ekaterinburg: UrO RAN, 2012.
  5. Kutinov Yu. G., Mineev A. L., Chistova Z. B., Polyakova E. V., Vybor tsifrovoi modeli rel’efa severnykh arkticheskikh territorii RF dlya geoekologicheskogo raionirovaniya (Selection of a digital elevation model of the northern Arctic territories of the Russian Federation for geo-ecological zoning), In: Geografiya arkticheskikh regionov 2017 (Geography of Arctic regions 2017), Saint Petersburg: Tipografiya OOO “Staryi gorod”, 2017, pp. 160–163.
  6. Kutinov Yu. G., Polyakova E. V., Chistova Z. B., Mineev A. L., Myrtseva E. A., Veroyatnost’ proyavleniya erozionnykh protsessov na territorii Arkhangel’skoi oblasti na osnove tsifrovogo modelirovaniya rel’efa (The probability of erosion processes in the Arkhangelsk region on the basis of digital elevation modeling), Riski i bezopasnost’ v stremitel’no menyayushchemsya mire (Risks and safety in rapidly changing world), Proc. 6th Intern. Scientific Conf., Prague: Vědecko vydavatelské centrum “Sociosféra-CZ”, 2018, pp. 44–48.
  7. Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B. (2015a), Metodicheskie aspekty sozdaniya tsifrovoi modeli rel’efa Arkhangel’skoi oblasti na osnove ASTER GDEM V.2 (Methodical aspects of creating a digital elevation model of the Arkhangelsk region based on ASTER GDEM V.2), Sovremennye problemy nauki i obrazovaniya, 2015, No. 2, available at: www.science-education.ru/129-21949.
  8. Mineev A. L., Kutinov Yu. G., Chistova Z. B., Polyakova E. V. (2015b), Podgotovka tsifrovoi modeli rel’efa dlya issledovaniya ekzogennykh protsessov severnykh territorii Rossiiskoi Federatsii (Preparation of a digital elevation model for the study of exogenous processes in the northern territories of the Russian Federation), Prostranstvo i Vremya, 2015, No. 3(21), pp. 278–291.
  9. Mineev A. L., Kutinov Yu. G., Chistova Z. B., Polyakova E. V., Geoekologicheskoe raionirovanie territorii Arkhangel’skoi oblasti s ispol’zovaniem tsifrovykh modelei rel’efa i GIS-tekhnologii (Geoecological zoning of the territory of the Arkhangelsk region using digital elevation models and GIS technologies), Prostranstvo i Vremya, 2017, No. 2–4(28–30), pp. 267–288.
  10. Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B., Nadezhnost’ tsifrovoi modeli rel’efa Arkhangel’skoi oblasti dlya provedeniya geoekologicheskikh issledovanii (The reliability of a digital elevation model of the Arkhangelsk region for geoecological research), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 58–67, available at: https://doi.org/10.21046/2070-7401-2018-15-4-58-67.
  11. Opasnye ekzogennye protsessy (Dangerous exogenous processes), Osipov V. I. (ed.), Moscow: GEOS, 1999, 290 p.
  12. Poznanin V. L., Erozionnye protsessy v kriolitozone (Erosion processes in the cryolithozone), Prostranstvo i Vremya, 2012, No. 1(7), pp. 127–132.
  13. Polyakova E. V., Geomorfometricheskii podkhod v geoekologicheskikh issledovaniyakh severnykh territorii strany (Geomorphometric approach in geoecological studies of the northern territories of the country), Uspekhi sovremennogo estestvoznaniya, 2018, No. 3, pp. 117–122, available at: https://doi.org/10.17513/use.36712.
  14. Polyakova E. V., Kutinov Yu. G., Chistova Z. B., Mineev A. L., Otsenka veroyatnosti proyavleniya prirodnykh ekzogennykh geologicheskikh protsessov na osnove tsifrovogo modelirovaniya rel’efa (Estimation of the probability of natural exogenous geological processes on the basis of digital elevation modeling), Sergeevskie chteniya. Inzhenernaya geologiya i geoekologiya, Moscow: GEOS, 2016, pp. 684–688.
  15. Problemy klassifitsirovaniya sklonovykh gravitatsionnykh protsessov (Classification problems slope gravitational processes), Churinov M. V., Tolstykh E. A. (eds.), Moscow: Nauka, 1985, 204 p.
  16. Evans I. S., The effect of resolution on gradients calculated from an altitude matrix, Report 3 on Grant DA-ERO-591-73-G0040 “Statistical characterization of altitude matrices by computer”, Durham, England: Department of Geography, University of Durham, 1975, 24 p.
  17. Forgy E., Cluster analysis of multivariate data: Efficiency versus interpretability of classifications, Biometrics, 1965, Vol. 21, pp. 768–769.
  18. Huggett R. J., Cheesman J., Topography and the Environment, Harlow: Pearson Education, 2002, 274 p.
  19. Morissette L., Chartier S., The k-means clustering technique: General considerations and implementation in Mathematica, Tutorials in Quantitative Methods for Psychology, 2013, Vol. 9, No. 1, pp. 15–24, available at: http://dx.doi.org/10.20982/tqmp.09.1.p015.
  20. Polyakova E., Gofarov M., Kutinov Yu., Belyaev V., Chistova Z., Neverov N., Staritsyn V., Mineev A., Durynin S., Erosion processes in karst landscapes of the Russian plain northern taiga, based on digital elevation modelling, J. Mountain Science, 2016, Vol. 13, No. 4, pp. 569–580, available at: https://doi.org/10.1007/s11629-015-3642-3.
  21. Shary P. A., Sharaya L. S., Mitusov A. V., The problem of scale-specific and scale-free approaches in geomorphometry, Geografia Fisica e Dinamica Quaternaria, 2005, Vol. 28, No. 1, pp. 81–101.
  22. Vatti B. R., A generic solution to polygon clipping, Communications of the ACM, 1992, Vol. 35, No. 7, pp. 56–63, available at: http://dx.doi.org/10.1145/129902.129906.