ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 191-201

Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: indices of intensity of deep convection

I.L. Bashmachnikov 1, 2 , A.M. Fedorov 3, 2 , A.V. Vesman 2, 4, 3 , T.V. Belonenko 3 , D.S. Dukhovskoy 5 
1 St. Petersburg State University, Saint Petersburg, Russia
2 Nansen International Environmental and Remote Sensing Centre, Saint Petersburg, Russia
3 Saint Petersburg State University, Saint Petersburg, Russia
4 State Research Center "Arctic and Antarctic Research Institute", Saint Petersburg, Russia
5 The Center for Ocean-Atmospheric Prediction Studies of the Florida State University, Tallahassee, USA
Accepted: 16.10.2018
DOI: 10.21046/2070-7401-2019-16-1-191-201
Variation in locations of the maximum development of deep convection in the subpolar seas, taking into account their small dimensions, represent difficulty in identifying its interannual variability from usually sparse in situ data. In this work, the interannual variability of the maximum convection depth, is obtained using one of the most complete datasets ARMOR, which combines in situ and satellite data. The convection depths, derived from ARMOR, are used for testing the efficiency of two indices of convection intensity: (1) sea-level anomalies from satellite altimetry and (2) the integral water density in the areas of the most frequent development of deep convection. The first index, capturing some details, shows low correlations with the interannual variability of the deep convection intensity. The second index shows high correlation with the deep convection intensity in the Greenland, Irminger and Labrador seas. Asynchronous variations in the deep convection intensity in the Labrador-Irminger seas and in the Greenland Sea are obtained. In the Labrador and in the Irminger seas, the quasi-seven-year variations in the convection intensity are identified.
Keywords: deep convection, assimilation of satellite data, altimetry, water density, the Greenland Sea, the Labrador Sea, the Irminger Sea
Full text

References:

  1. Alekseev G. V., Johannessen O. M., Kovalevsky D. V., O razvitii konvektivnykh dvizhenii pod vozdeistviem lokal’nykh vozmushchenii plotnosti na poverkhnosti morya (On development of convective motions under the influence of local density perturbations on the sea surface), Izvestiya RAN. Fizika atmosphery i okeana, 2001, Vol. 37, No. 3, pp. 368–377.
  2. Bashmachnikov I. L., Fedorov A. M., Vesman A. V., Belonenko T. V., Koldunov V. A., Dukhovskoy D. C., Termokhalinnaya konvektsiya v subpolyarnykh moryakh Severnoi Atlantiki i Severo-Evropeiskogo basseina SLO po sputnikovym i naturnym dannym. Chast’ 1: lokalizatsiya oblastei konvektsii (Thermohaline convection in the Subpolar seas of the North Atlantic from satellite and in situ data. Part 1: localization of convection areas), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 184–194.
  3. Belonenko T. V., Fedorov A. M., Stericheskie kolebaniya urovnya i glubokaya konvektsiya v Labradorskom more i more Irmingera (Steric sea-level fluctuations and deep convection in the Labrador and the Irminger seas), Issledovaniya Zemli iz kosmosa, 2018, No. 3, pp. 56–69.
  4. Gladyshev S. V., Gladyshev V. S., Falina A. S., Sarafanov A. A., Zimnyaya konvektsiya v more Irmingera v 2004–2014 gg. (Winter convection in the sea of Irminger in 2004–2014), Oceanology, 2016, Vol. 56, No. 3, pp. 353–363.
  5. Kovalevsky D. V., Analiz i modelirovanie glubokoi konvektsii v Grenlandskom more: diss. kand. fiz.-mat. nauk (The analysis and modeling of deep convection in the Greenland sea, Cand. phys. and math. sci. thesis), Saint Petersburg, 2002, 230 p.
  6. Mironov E. U., Ledovye usloviya v Grenlandskom i Barentsevom moryakh i ikh dolgosrochnyi prognoz (Ice conditions in the Greenland and the Barents seas and their long-term forecasts), Saint Petersburg: AARI, 2004, 320 p.
  7. Nagurny A. P., Popov A. V., Intensivnoe podnyatie glubinnykh i donnykh vod i ikh formirovanie na poverkhnosti v raione Grenlandskoi kotloviny (Intensive uplift of deep and bottom waters and their formation near the sea-surface in the Greenland basin), Meteorologiya i gydrologiya, 1985, No. 7, pp. 70–75.
  8. Bönisch G., Blindheim J., Bullister J. L., Schlosser P., Wallace D. W., Long‐term trends of temperature, salinity, density, and transient tracers in the central Greenland Sea, J. Geophysical Research. C: Oceans, 1997, Vol. 102, No. C8, pp. 18553–18571.
  9. Budeus G., Schneider W., Krause G., Winter convective events and bottom water warming in the Greenland Sea, J. Geophysical Research. C: Oceans, 1998, Vol. 103, No. C9, pp. 18 513–18 527.
  10. de Boyer Montegut C., Madec G., Fischer A. S., Lazar A., Iudicone D., Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophysical Research. C: Oceans, 2004, Vol. 109, pp. C12003.
  11. de Jong M. F., van Aken H. M., Våge K., Pickart R. S., Convective mixing in the central Irminger Sea: 2002–2010, Deep Sea Research. Pt. I, 2012, Vol. 63, No. 1, pp. 36–51.
  12. Dukhovskoy D. S., Myers P. G., Platov G., Timmermans M. L., Curry B., Proshutinsky A., Bamber J. L., Chassignet E., Hu X., Lee C. M., Somavilla R., Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers, J. Geophysical Research. C: Oceans, 2016, Vol. 121, No. 1, pp. 877–907.
  13. Fischer J., Schott F., Visbeck M., Greenland Sea convection monitoring, Nordic Seas Symp., 1995, pp. 61–64.
  14. Fröb F., Olsen A., Våge K., Moore G., Yashayaev I., Jeansson E., Rajasakaren B., Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior, Nature Communications, 2016, Vol. 7, No. 13244, pp. 1–8, DOI: 10.1038/ncomms13244.
  15. Gelderloos R., Katsman C. A., Våge K., Detecting Labrador sea water formation from space, J. Geophysical Research. C: Oceans, 2013, Vol. 118, No. 4, pp. 2074–2086.
  16. Greenland Sea Project ― a venture toward improved understanding of the ocean’s role in climate, EOS Transactions. AGU, 1990, Vol. 71(24), pp. 750–756, DOI: 10.1029/90EO00208.
  17. Guinehut S., Dhomps A. L., Larnicol G., Le Traon P. Y., High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Science, 2012, Vol. 8, No. 5, pp. 845–857.
  18. Herrmann M., Bouffard J., Beranger K., Monitoring open-ocean deep convection from space, Geophysical Research Letters, 2009, Vol. 36, No. L03, DOI: 0.1029/2008GL036422.
  19. Holte J., Talley L. D., Gilson J., Roemmich D., An Argo mixed layer climatology and database, Geophysical Research Letters, 2017, Vol. 44, pp. 5618–5626, DOI: 10.1002/2017GL073426.
  20. Johannessen O. M., Lygre K., Eldevik T., Convective chimneys and plumes in the Northern Greenland Sea, The Nordic Seas: An Integrated Perspective, H. Drange, T. M. Dokken, T. Furevik, R. Gerdes, W. Berger (eds.), AGU, 2005, pp. 251–272.
  21. Kara A. B., Rochford P. A., Hurlburt H. E., An optimal definition for ocean mixed layer depth, J. Geophysical Research. C: Oceans, 2000, Vol. 105, pp. 16803–16821.
  22. Khatiwala S., Schlosser P., Visbeck M., Rates and mechanisms of water mass transformation in the Labrador Sea as inferred from tracer observations, J. Physical Oceanography, 2002, Vol. 32, No. 2, pp. 666–686.
  23. Latarius K., Quadfasel D., Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets, Deep Sea Research. Pt. I, 2016, Vol. 114, pp. 23–42.
  24. Malmberg S. A., Hydrographic investigations in the Iceland and Greenland seas in late winter 1971: “Deep Water Project”, Jokull, 1983, Vol. 33, pp. 133–140.
  25. Marshall J., Schott F., Open-ocean convection: Observations, theory, and models, Reviews of Geophysics, 1999, Vol. 37, No. 1, pp. 1–64.
  26. Meincke J., Jonsson S., Swift J. H., Variability of convective conditions in the Greenland Sea, ICES Marine Science Symp., 1992, Vol. 195, pp. 32–39.
  27. Pickart R. S., Straneo F., Moore G. W. K., Is Labrador Sea Water formed in the Irminger basin? Deep Sea Research. Pt. I, 2003, Vol. 50, pp. 23–52, DOI: 10.1016/S0967-0637(02)00134-6.
  28. Rhein M., Convection in the Greenland Sea, 1982–1993, J. Geophysical Research. C: Oceans, 1996, Vol. 101, No. C8, pp. 18183–18192.
  29. Rhein M., Kieke D., Hüttl-Kabus S., Roessler A., Mertens C., Meissner R., Klein B., Boning C. W., Yashayaev I., Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic, Deep Sea Research. Pt. II, 2011, Vol. 58, No. 17, pp. 1819–1832.
  30. Ronski S., Budeus G., Time series of winter convection in the Greenland Sea, J. Geophysical Research. C: Oceans, 2005, Vol. 110, No. C04015, DOI: 10.1029/2004JC002318.
  31. Schlosser P., Bonisch G., Rhein M., Bayer R., Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data, Science, 1991, Vol. 251, No. 4997, pp. 1054–1056.
  32. Somavilla R., Schauer U., Budeus G., Increasing amount of Arctic Ocean deep waters in the Greenland Sea, Geophysical Research Letters, 2013, Vol. 40, No. 16, pp. 4361–4366.
  33. Volkov D. L., Belonenko T. V., Foux V. R., Puzzling over the dynamics of the Lofoten Basin ― a sub-Arctic hot spot of ocean variability, Geophysical Research Letters, 2013, Vol. 40, No. 4, pp. 738–743.
  34. Yashayaev I., Hydrographic changes in the Labrador Sea, 1960–2005, Progress in Oceanography, 2007, Vol. 73, pp. 242–276.
  35. Yashayaev I., Loder J. W., Enhanced production of Labrador Sea Water in 2008, Geophysical Research Letters, 2009, Vol. 3, pp. L0160, DOI: 10.1029/2008GL036162.