ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 1, pp. 181-190

Antarctic Circumpolar Current as a waveguide for Rossby waves and mesoscale eddies

T.V. Belonenko 1 , A.V. Frolova 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 23.10.2018
DOI: 10.21046/2070-7401-2019-16-1-181-190
The paper deals with the interaction between Rossby waves and Antarctic circumpolar current (ACC) as viewed by satellite altimetry. We analyze time-longitude diagrams (Hovmollers diagrams) of sea level anomalies for various latitudes of the Southern Hemisphere. The mesoscale eddies are captured by the ACC and propagate to the east along with the general mean flow. North of the boundary of the ACC, mesoscale eddies propagate westward. We calculate the “empirical” velocities of vortex displacement for various latitudes of the Southern Hemisphere using the time- longitude diagrams. We also compute the speed of Rossby waves from dispersion relation of Rossby waves in the long-wave approximation. The result indicates that the theoretical velocities decrease to the Southern pole, and the values of the «empirical» ones first decrease to zero, and then start to grow, changing sign. In the critical layer, the transition of the “empirical” wave velocity through zero occurs, and the position of the critical layer determines the boundary of the waveguide of the ACC. We propose a method for determining the position of the critical layer and the boundary of the waveguide of the ACC by analyzing the Hovmollers diagrams. The obtained approach can be applied to the geographical division of a waveguide.
Keywords: SLA, sea level anomaly, Antarctic Circumpolar Current, ACC, altimetry, mesoscale eddies, Rossby waves, waveguide, critical layer, Southern Ocean
Full text


  1. Belonenko T. V., Sandalyuk N. V., Sravnenie vklada lineinykh i nelineinykh effektov v izmenchivost’ urovnya okeana po sputnikovym dannym (Comparison of the contribution of linear and nonlinear effects to ocean level variability from satellite data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 1, pp. 29–41.
  2. Belonenko T. V., Zakharchuk E. A., Fuks V. R., Volny ili vikhri? (Waves or vortices?), Vestnik SPbGU, Ser. 7, Issue 3, No. 21, 1998, pp. 37–44.
  3. Belonenko T. V., Zakharchuk E. A., Fuks V. R., Gradientno-vikhrevye volny v okeane (Gradient-vortex waves in the ocean), Saint Petersburg: Izd. Sankt-Peterburgskogo universiteta, 2004, 215 p.
  4. Belonenko T. V., Koldunov A. V., Fuks V. R., Advektsiya khlorofilla volnami Rossbi (Advection of chlorophyll by Rossby waves), Vestnik Sankt-Peterburgskogo universiteta. Ser. 7: Geologiya, Geografiya, 2011, Issue 4, No. 4, pp. 106–109.
  5. Gnevyshev V. G., Shrira V. I., Transformatsiya monokhromaticheskikh voln Rossbi v kriticheskom sloe na zonal’nom techenii (Transformation of monochromatic Rossby waves in a critical layer in a zonal flow), Izvestiya AN SSSR. Fizika atmosfery i okeana, Vol. 25, No. 8, pp. 852–862.
  6. Kubryakov A. A., Belonenko T. V., Stanichnyi S. V., Vliyanie sinopticheskikh vikhrei na temperaturu morskoi poverkhnosti v severnoi chasti Tikhogo okeana (The effect of synoptic vortices on the temperature of the sea surface in the northern part of the Pacific Ocean), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 124–133.
  7. Monin A. S., Zhikharev G. M., Okeanskie vikhri (Ocean vortices), Uspekhi fizicheskikh nauk, 1990, Vol. 160, Issue 5, pp. 1–47.
  8. Nezlin M. V., Solitony Rossbi (Rossby soliton), Uspekhi fizicheskikh nauk, 1986, Vol. 150, Issue 1, pp. 1–58.
  9. Starr V. P., Fizika yavlenii s otritsatel’noi vyazkost’yu (Physics of phenomena with negative viscosity), Moscow: Mir, 1971, 130 p.
  10. Tarakanov R. Yu., Struktura krupnomasshtabnoi tsirkulyatsii antarkticheskikh vod: Avtoref. diss. dokt. fiz.-mat. nauk (Structure of large-scale circulation of Antarctic waters, Extended abstract Doct. phys.-math. sci. thesis), Moscow, 2015, 42 p.
  11. An eddy-resolving model of the Southern Ocean, FRAM Group, EOS: Transactions American Geophysical Union, 1991, No. 72, Issue 15, pp. 169–175.
  12. Belonenko T. V., Bashmachnikov I. L., Kubryakov A. A., Horizontal advection of temperature and salinity by Rossby waves in the North Pacific, Intern. J. Remote Sensing, 2018, No. 39, Issue 8, pp. 2177–2188, available at:
  13. Challenor P. G., Cipollini P., Cromwell D., Use of the 3D Radon transform to examine the properties of oceanic Rossby waves, J. Atmospheric an Oceanic Technology, 2001, Vol. 18, pp. 1558–1566.
  14. Chelton D. B., Schlax M. G., Witter D. L., Richman J. G., Geosat altimeter observations of the surface circulation of the Southern Ocean, J. Geophysical Research: Oceans, 1990, Vol. 95, No. C10, pp. 17877–17903.
  15. Chelton D. B., de Szoeke R. A., Schlax M. G., El Naggar K., Siwertz N., Geographical variability of the first-baroclinic Rossby radius of deformation, J. Physical Oceanography, 1998, No. 28, pp. 433–460.
  16. Chelton D. B., Schlax M. G., Samelson R. M., de Szoeke R. A., Global observations of large oceanic eddies, Geophysical Research Letters, 2007, Vol. 34, pp. 1–5.
  17. Gille S. T., Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: Method and application, J. Geophysical Research: Oceans, 1994, Vol. 99, No. C9, pp. 18255–18273.
  18. Hughes C. W., The Antarctic Circumpolar Current as a waveguide for Rossby waves, J. Physical Oceanography, 1995, Vol. 26, No. 7, pp. 1375–1387.
  19. Hughes C. W., Killworth P. D., Effects of bottom topography in the large-scale circulation of the Southern Ocean, J. Physical Oceanography, 1995, Vol. 25, No. 11, pp. 2485–2497.
  20. Ivchenko V. O., Tréguier A. M., Best S. E., A kinetic energy budget and internal instabilities in the Fine Resolution Antarctic Model, J. Physical Oceanography, 1995, Vol. 27, No. 1, pp. 5–22.
  21. Killworth P. D., On the propagation of stable baroclinic Rossby waves through a mean shear flow, Deep Sea Research. Part A, 1979, Vol. 26, pp. 997–1031.
  22. Lee M. M., Coward A., Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model, Ocean Modelling, 2003, Vol. 5, No. 3, pp. 249–266.
  23. Lindzen R. S., Instability of plane parallel shear flow (toward a mechanistic picture of how it works), Pure and Applied Geophysics, 1988, Vol. 126, No. 1, pp. 103–121.
  24. Morrow R., Coleman R., Church J., Chelton D., Surface eddy momentum flux and velocity variances in the Southern Ocean from GeoSat altimetry, J. Physical Oceanography, 1994, Vol. 24(10), pp. 2050–2071.
  25. Munk W. H., Palmén E., Note on the dynamics of the Antarctic Circumpolar Current, Tellus, 1951, Vol. 3, No. 1, pp. 53–55.
  26. Rhines P. B., Waves and turbulence on a beta-plane, J. Fluid Mechanics, 1974, Vol. 69, No. 3, pp. 417–443.
  27. Thompson A. F., The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2008, Vol. 366, No. 1885, pp. 4529–4541.