ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 208-217

On the “comb” structure of the edges of slicks on the sea surface

S.A. Ermakov 1 , O.Yu. Lavrova 2 , I.A. Kapustin 1 , A.V. Ermoshkin 1 , A.A. Molkov 1 , O.A. Danilicheva 1 
1 Institute of Applied Physics RAS, Nizhniy Novgorod, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 05.12.2018
DOI: 10.21046/2070-7401-2018-15-7-208-217
Analysis of observations of comb structures formed at the edges of marine slicks using satellite radar imagery and data of field experiments with artificial slicks carried out from an Oceanographic Platform on the Black Sea has been performed. It is shown that the structures appear at upwind boundaries of slicks and are typical both for mineral oil films and for biogenic films. Comb structures are practically parallel to the wind direction. For the case of oil spills from ships moving in the wind direction the structures are not formed. Characteristic cross-wind scales of the “combs” are similar to those for windrows, or so-called Langmuir circulations. A physical explanation of a mechanism of the comb structure formation based on the effect of redistribution of surfactants in the field of surface currents induced by Langmuir circulations is given. The latter are characterized by the existence of quasi periodic convergent/divergent currents in the cross wind direction. These currents under certain conditions result in film tearing in divergent zones and surfactant accumulation in convergent zones near upwind slick edges. Theoretical estimates of the comb scales demonstrate satisfactory consistency with observations.
Keywords: sea surface, film slicks, ocean radar probing, windrows, Langmuir circulations
Full text

References:

  1. Ermakov S. A., Vliyanie plenok na dinamiku gravitatsionno-kapillyarnykh voln (Impact of films on the dynamics of gravity-capillary waves), Nizhniy Novgorod: IPF RAN, 2010, 164 p.
  2. Ermakov S. A., Lavrova O. Yu., Kapustin I. A., Makarov E. V., Sergievskaya I. A., Issledovaniya osobennostei geometrii plenochnykh slikov na morskoi poverkhnosti po dannym sputnokovykh nabludenii (The study of peculiarities of the geometry of film slicks on the sea surface from data of satellite observations), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 3, pp. 97–105.
  3. Ermakov S. A., Ermoshkin A. V., Kapustin I. A., Ob effekte szhatiya plenochnogo slika (On the effect of film slick compression), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 288–294.
  4. Lavrova O. Yu., Mityagina M. I., Sputnikovyi monitoring plenochnykh zagryaznenii poverkhnosti Chernogo morya (Satellite monitoring of surface film pollution of the Black Sea), Issledovanie Zemli iz kosmosa, 2012, No. 3, pp. 48–65.
  5. Monin A. S., Krasitskiy V. P., Yavleniya na povekrhnosti okeana (Phenomena on the ocean surface), Leningrad: Gidrometeoizdat, 1985, 376 p.
  6. da Silva J. C., Ermakov S. A., Robinson I. S., Jeans D. R. G., Kijashko  S. V., Role of surface films in ERS SAR signatures of internal waves on the shelf. 1. Short-period internal waves, J. Geophysical Research, 1998. Vol. 103, No. C4, pp. 8009–8031.
  7. Dysthe K. B., On surface renewal and sea slicks, In: Marine Surface Films: Chemical Characteristics, Influence on AirSea Interactions, and Remote Sensing, Berlin, Heidelberg, New York: Springer-Verlag, 2006, pp. 65–74.
  8. Ermakov S. A., Panchenko A. R., Salashin S. G., Film Slicks on the Sea Surface and Some Mechanisms of Their Formation, Dynamics of Atmospheres and Oceans, 1992, Vol. 16, pp. 279–304.
  9. Ermakov S., Kapustin I., Sergievskaya I., da Silva J., Spreading of oil films on the sea surface: radar/optical observations and physical mechanisms, Proc. SPIE 9638, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2015, 963807, DOI: 10.1117/12.2195004.
  10. Ermakov S., Kapustin I., Molkov A., Leshev G., Danilicheva O., Sergievskaya I., Remote sensing of evolution of oil spills on the water surface, Proc. SPIE 10784, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, 2018, 107840L, DOI: 10.1117/12.2325745.
  11. Fay J. A., The spread of oil slicks on a calm sea, Oil on the Sea, Ocean Technology, Boston: Springer, 1969, pp. 53–63.
  12. Gade M., Byfield V., Ermakov S., Lavrova O., Mitnik L., Slicks as indicators for marine processes, Oceanography, 2013, Vol. 26(2), pp. 138–149.
  13. Lavrova O. Yu., Mityagina M. I., Satellite monitoring of oil slicks on the Black Sea surface, Izvestiya, Atmospheric and Oceanic Physics, 2013, Vol. 49, No. 9, pp. 897–912.
  14. Marmorino G., Smith G. B., Toporkov J. V., Sletten M. A., Perkovich D., Frasier S. J., Evolution of ocean slicks under a rising wind, J. Geophysical Research, 2008, Vol. 115, C04030.
  15. Onstott R., Rufenach C., Shipboard active and passive microwave measurement of ocean surface slicks off the Southern Californian coast, J. Geophysical Research, 1992, Vol. 97, pp. 5315–5323.
  16. Phillips O. M., The dynamics of the upper ocean, 2nd ed., Cambridge University Press, 1977, 336 p.
  17. Phillips W. R. C., On the Spreading Radius of Surface Tension Driven Oil on Deep Water, Applied Scientific Research, 1997, Vol. 57, pp. 67–80.