ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 184-194

Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: localization of the deep convection sites

I.L. Bashmachnikov 1, 2 , A.M. Fedorov 1, 2 , A.V. Vesman 2, 3, 1 , T.V. Belonenko 1 , A.V. Koldunov 1 , D.S. Dukhovskoy 4 
1 St. Petersburg State University, Saint Petersburg, Russia
2 Nansen International Environmental and Remote Sensing Centre, Saint Petersburg, Russia
3 State Research Center "Arctic and Antarctic Research Institute", Saint Petersburg, Russia
4 Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, USA
Accepted: 05.10.2018
DOI: 10.21046/2070-7401-2018-15-7-184-194
Deep convection in the Greenland, the Labrador and the Irminger seas, as part of the global ocean conveyor belt (the Atlantic Meridional Overturning Circulation), is an important component of the climate system of the Earth. In situ investigations of interannual variability of the convection depth are challenging due to a small size of convective cells and interannual variations of their locations within the basins. In this work, using ARMOR data-set, which combines in situ and satellite data, the areas of the most frequent occurrence of deep convection in the North Atlantic are refined. It is shown that in the Labrador and the Irminger seas, deep convection (exceeding 1000 m) can develop in any point of a single region, covering almost all the water area of the seas. Within this region there are three sub-regions of the most frequent development of the deep convection. In addition to two traditionally allocated areas in each of the seas, the deep convection often occurs also at the junction of the two seas, south of Cape Farwell. Convection typically reaches its maximum depth in March. In the Greenland Sea deep convection occurs most often in the central and the south-eastern parts of the sea, as well as in the Boreas basin. Convection typically reaches its maximum depth in April.
Keywords: deep convection, data-set with assimilation of satellite data, the Greenland Sea, the Labrador Sea, the Irminger Sea
Full text

References:

  1. Gladyshev S. V., Gladyshev V. S., Falina A. S., Sarafanov A. A., Zimnyaya konvektsiya v more Irmingera v 2004–2014 gg. (Winter convection in the sea of Irminger in 2004–2014), Oceanology, 2016, Vol. 56, No. 3, pp. 353–363.
  2. Moretskiy V. N., Popov A. V., Vodnye massy Norvezhskogo i Grenlandskogo morei i osnovnye tipy vertikal’noi struktury vod (Water masses of the Norwegian and Greenland seas and main types of vertical water structure), In: Struktura i izmenchivost krupnomasshtabnyikh okeanologicheskikh protsessov i poley v Norvezhskoy energoaktivnoy zone (Structure and variability of large-scale oceanographic processes and fields in the Norwegian energy-active zone), Leningrad: Gidrometizdat, 1989, pp. 18–27.
  3. Nagurnyiy A. P., Popov A. V., Intensivnoe podnyatie glubinnykh i donnykh vod i ikh formirovanie na poverkhnosti v raione Grenlandskoi kotloviny (Intensive uplift of deep and bottom waters and their formation on the surface near the Greenland basin), Meteorologiya i gidrologiya, 1985, No. 7, pp. 70–75.
  4. Sarafanov A. A., Falina A. S., Sokov A. V., Mnogoletnie izmeneniya kharakteristik i tsirkulyatsii glubinnykh vod na severe Atlanticheskogo okeana: rol’ regional’nykh i vneshnikh faktorov (Long-Term changes in the characteristics and circulation of deep water masses in the North Atlantic ocean: the role of regional and external factors), Doklady Akademii nauk, 2013, Vol. 450, No. 4, pp. 470–473, DOI: 10.7868/S0869565213160196.
  5. Falina A. S., Sarafanov A. A., Dobrolyubov S. A., Zapotyilko V. S., Gladyishev S. V., Konvektsiya i stratifikatsiya vod na severe Atlanticheskogo okeana po dannym izmerenii zimoi 2013/14 gg. (Convection and water stratification in the North Atlantic Ocean according to measurements in winter 2013/14), Vestnik Moskovskogo universiteta, Ser. 5: Geografiya”, 2017, No. 4, pp. 45–54.
  6. Fedorov A. M., Bashmachnikov I. L., Belonenko T. V., Lokalizatsiya oblastei glubokoi konvektsii v moryakh Severo-Evropeiskogo basseina, Labrador i Irmingera (Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea), Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle, 2018, Vol. 63, No. 3, pp. 345–362.
  7. Androsov A., Rubino A., Romeiser R., Sein D. V., Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models, Meteorologische Zeitschrift, 2005, Vol. 14, No. 6, pp. 693–702, DOI: https://doi.org/10.1127/0941-2948/2005/0078.
  8. Buckley M. W., Marshall J., Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review, Reviews of Geophysics, 2016, Vol. 54, pp. 5–63, DOI: 10.1002/2015RG000493.
  9. Budeus G., Schneider W., Krause G., Winter convective events and bottom water warming in the Greenland Sea, J. Geophysical Research. C: Oceans, 1998, Vol. 103, No. C9, pp. 18513–18527.
  10. Chu P. C., Geophysics of deep convection and deep water formation in oceans, In: Deep convection and deep water formation in the oceans, Chu S., Gascard J. C. (eds.), Elsevier Oceanography Series, 1991, Vol. 57, pp. 3–16.
  11. Clarke R. A., Swift J. H., Reid J. L., Koltermann K. P., The formation of Greenland Sea Deep Water: double diffusion or deep convection? Deep Sea Research. Part A, 1990, Vol. 37, No. 9, pp. 1385–1424.
  12. de Boyer Montegut C., Madec G., Fischer A. S., Lazar A., Iudicone D., Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology, J. Geophysical Research. C: Oceans, 2004, Vol. 109, p. C12003, DOI: 10.1029/2004JC002378.
  13. de Jong M. F., de Steur L., Strong winter cooling of the Irminger Sea in winter 2014–15, exceptional deep convection, and the emergence of anomalously low SST, Geophysical Research Letters, 2016, Vol. 43, pp. 1717–1734, DOI: 10.1002/2016GL069596.
  14. de Jong M. F., van Aken H. M., Våge K., Pickart R. S., Convective mixing in the central Irminger Sea: 2002–2010, Deep Sea Research. Part I, 2012, Vol. 63, No. 1, pp. 36–51.
  15. Deep convection and deep water formation in the oceans, Chu S., Gascard J. C. (eds.), Elsevier Oceanography Series, 1991, Vol. 57, 382 p.
  16. Drange H., Dokken T., Furevik T., Gerdes R., Berger W., Nesje A., Orvik A., Skagseth Ø., Skjelvan I., Østerhus S., The Nordic Seas: An Overview, In: The Nordic Seas: An Integrated Perspective, AGU Monograph 158, 2005, pp. 1–10.
  17. Fröb F., Olsen A., Våge K., Moore G., Yashayaev I., Jeansson E., Rajasakaren B., Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior, Nature Communications, 2016, Vol. 7, p. 13244, DOI: 10.1038/ncomms13244.
  18. Gelderloos R., Katsman C. A., Våge K., Detecting Labrador sea water formation from space, J. Geophysical Research. C: Oceans, 2013, Vol. 118, No. 4, pp. 2074–2086.
  19. Good S. A., Martin M. J., Rayner N. A., EN4: Quality controlled ocean temperature and salinity profiles and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophysical Research. C: Oceans, 2013, Vol. 118, pp. 6704–6716, DOI: 10.1002/2013JC009067.
  20. Greenland Sea Project ― a venture toward improved understanding of the ocean’s role in climate, EOS Trans. AGU, 1990, Vol. 71(24), pp. 750–756, DOI: 10.1029/90EO00208.
  21. Guinehut S., Dhomps A. L., Larnicol G., Le Traon P. Y., High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Science, 2012, Vol. 8, No. 5, pp. 845–857.
  22. Holte J., Talley L. D., Gilson J., Roemmich D., An Argo mixed layer climatology and database, Geophysical Research Letters, 2017, Vol. 44, pp. 5618–5626, DOI: 10.1002/2017GL073426.
  23. Jeansson E., Olsen A., Jutterström S., Arctic Intermediate Water in the Nordic Seas, 1991–2009, Deep Sea Research. Part I, 2017, Vol. 128, pp. 82–97.
  24. Johannessen O. M., Sandven S., Johannessen J. A., Eddy-Related Winter Convection in the Boreas Basin, Deep convection and deep water formation in the oceans, Chu S., Gascard J. C. (eds.), Elsevier Oceanography Series, 1991, Vol. 57, pp. 86–104.
  25. Johannessen O. M., Lygre K., Eldevik T., Convective chimneys and plumes in the Northern Greenland Sea, The Nordic Seas: An Integrated Perspective, 2005, pp. 251–272.
  26. Kara A. B., Rochford P. A., Hurlburt H. E., Mixed layer depth variability over the global ocean, J. Geophysical Research. C: Oceans, 2003, Vol. 108, pp. 3079, DOI: 10.1029/2000JC000736, C3.
  27. Kawasaki T., Hasumi H., Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea, Ocean Modelling, 2014, Vol. 75, pp. 51–64.
  28. Killworth P. D., Deep convection in the world ocean, Reviews of Geophysics, 1983, Vol. 21, No. 1, pp. 1–26.
  29. Latarius K., Quadfasel D., Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets, Deep Sea Research. Part I, 2016, Vol. 114, pp. 23–42.
  30. Lazier J., Hendry R., Clarke A., Yashayaev I., Rhines P., Convection and restratification in the Labrador Sea, 1990–2000, Deep-Sea Research. Part I, 2002, Vol. 49, pp. 1819–1835.
  31. Lozier M. S., Gary S. F., Bower A. S., Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export, Deep Sea Research. Part II, 2013, Vol. 85, pp. 147–153.
  32. Malmberg S. A., Hydrographic investigations in the Iceland and Greenland seas in late winter 1971: “Deep Water Project”, Jokull, 1983, Vol. 33, pp. 133–140.
  33. Marshall J., Schott F., Open-ocean convection: Observations, theory, and model, Reviews of Geophysics, 1999, Vol. 37, No. 1, pp. 1–64.
  34. Moore  G. W. K., Våge K., Pickart R. S., Renfrew I. A., Decreasing intensity of open-ocean convection in the Greenland and Iceland seas, Nature Climate Change, 2015, Vol. 5, No. 9, p. 877.
  35. Pickart R. S., Torres D. J., Clarke R. A., Hydrography of the Labrador Sea during active convection, J. Physical Oceanography, 2002, Vol. 32, No. 2, pp. 428–457.
  36. Rhein M., Kieke D., Hüttl-Kabus S., Roessler A., Mertens C., Meissner R., Yashayaev I., Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic, Deep Sea Research. Part II, 2011, Vol. 58, No. 17, pp. 1819–1832.
  37. Rhein M., Kieke D., Steinfeldt R., Advection of North Atlantic deep water from the Labrador Sea to the southern hemisphere, J. Geophysical Research. C: Oceans, 2015, Vol. 120, No. 4, pp. 2471–2487.
  38. Ronski S., Budeus G., Time series of winter convection in the Greenland Sea, J. Geophysical Resarch. C: Oceans, 2005, Vol. 110, p. C04015, DOI: 10.1029/2004JC002318.
  39. Rudels B., Fahrbach E., Meincke J., Budéus G., Eriksson P., The East Greenland Current and its contribution to the Denmark Strait overflow, ICES J. Marine Science, 2002, Vol. 59, No. 6, pp. 1133–1154.
  40. Vage K., Pickart R. S., Thierry V., Reverdin G., Lee C. M., Petrie B., Agnew T. A., Wong A., Ribergaard M. H., Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008, Nature Geoscience, 2009, Vol. 2, pp. 67–72, DOI: 10.1038/ngeo382.
  41. Yashayaev I., Hydrographic changes in the Labrador Sea, 1960–2005, Progress in Oceanography, 2007, Vol. 73, pp. 242–276.
  42. Yashayaev I., Clarke A., Evolution of North Atlantic water masses inferred from Labrador Sea salinity series, Oceanography, 2008, Vol. 21, No. 1, pp. 30–45.
  43. Yashayaev I., Loder J. W., Enhanced production of Labrador Sea Water in 2008, Geophysical Research Letters, 2009, Vol. 3, p. L0160, DOI: 10.1029/2008GL036162.