ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 131-140

On definition of temperature and salinity of sea water by means of active sounding of the ocean

A.S. Zapevalov 1 
1 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 19.11.2018
DOI: 10.21046/2070-7401-2018-15-7-131-140
The known limitations in the use of microwave radiometers for remote determination of physico-chemical characteristics (temperature and salinity) of sea water require new approaches to solve this problem. In this paper, the possibility of determining the temperature and salinity of the near-surface layer of the ocean by means of active radiosounding is analyzed. The main factor hampering the implementation of this approach is the dependence of the scattered radio signal on the level of the spectral density of resonant surface waves which varies widely. Changes in the radio signal caused by changes in the spectral density of resonant waves occur within a much wider range than changes caused by variations in temperature or salinity. To reduce the effect of this factor on the results of measurements, it is proposed to use the polarization ratio. It is shown that the sensitivity of the polarization ratio to changes in temperature and salinity is of the same order of magnitude as the sensitivity to these parameters of radiometric measurements. The polarization ratio is also affected by changes in the level of sea surface roughness. It is influenced by variations in the local angle of incidence caused by the presence of surface waves whose length is much greater than the length of the resonant waves. It is shown that changes in wind speed, which determine the characteristics of the roughness of the sea surface, approximately equally affect the polarization ratio and the brightness temperature.
Keywords: remote sensing of the Earth, active radio sounding, radiometric measurements, sea surface, inverse problems
Full text

References:

  1. Armand N. A., Tishchenko Yu. G., Savorskiy V. P., Smirnov M. T., Ablyazov V. S., Khaldin A. A., Perspektivnye kosmicheskie proyekty s SVCh-radiometricheskimi sistemami L-diapazona (Promising space projects with l-band microwave radiometric systems), Issledovaniye Zemli iz kosmosa, 2010, No. 1, pp. 20–26.
  2. Bass F. G., Fuks I. M., Rasseyaniye voln na statisticheski nerovnoyi poverkhnosti (Scattering of waves on a statistically uneven surface), Moscow: Nauka, 1972, 424 p.
  3. Danilychev M. V., Nikolaev A. N., Kutuza B. G., Ispolzovanie metoda Kirkhgofa dlya prakticheskikh raschetov v mikrovolnovoi radiometrii vzvolnovannoi morskoi poverkhnosti (The use of Kirchhoff method for practical calculations in microwave radiometry of the rough sea surface), Radiotekhnika i elektronika, 2009, Vol. 54, No. 8, pp. 915–925.
  4. Danilychev M. V., Kutuza B. G., Kaloshin V. A., Moshkov A. V., Ispolzovaniye radiometrii SVCh-diapazona dlya izmereniya solenosti poverkhnostnykh vod Mirovogo okeana (Using microwave radiometry to measure the salinity of surface waters of the World Ocean), Zhurnal Radioelektroniki, 2015, No. 1, pp. 1–13.
  5. Zabolotskikh E. V., Mitnik L. M., Shapron B. Zh. A., Aniskina O. G., Smirnova Yu. E., Dikinis A. V., Uluchshennie modeli pogloshcheniya atmosfery i izlucheniya okeana v diapazone 5–100 GGc dlya rascheta yarkostnykh temperatur sistemy okean-atmosfera (Improved models of the atmospheric absorption and ocean emission in the range of 5–100 GHz for the simulation of the brightness temperatures over the open ocean), Uchenye zapiski Rossiiskogo gosudarstvennogo gidrometeorologicheskogo universiteta, 2013, No. 29, pp. 169–182.
  6. Zapevalov A. S., Lebedev N. E., Modelirovanie statisticheskikh kharakteristik poverkhnosti okeana pri distantsionnom zondirovanii v opticheskom diapazone (Simulation of statistical characteristics of sea surface during remote optical sensing), Atmospheric and Oceanic Optics, 2014, Vol. 27, No. 6, pp. 487–492.
  7. Zapevalov A. S., Pokazeev K. V., Pustovoitenko V. V., O predel’noi tochnosti al’timetricheskogo opredeleniya skorosti privodnogo vetra (About the maximum accuracy of the surface wind altimeter estimation), Issledovanie Zemli iz kosmosa, 2006, No. 3, pp. 49–54.
  8. Karaev V. Yu., Panfilova M. A., Balandina G. N., Chu K., Vosstanovlenie dispersii naklonov krupnomasshtabnykh voln po radiolokatsionnym izmereniyam v SVCh-diapazone (The restoration of the variance of slopes of large-scale waves on radar measurements in the microwave range), Issledovanie Zemli iz kosmosa, 2012, No. 4, pp. 62–77.
  9. Kuzmin A. V., Repina I. A., Sadovskiy I. N., Selunskiy A. B., Mikrovolnovye radiometricheskie issledovaniya morskoy poverkhnosti (Microwave radiometric studies of the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 76–97.
  10. Pospelov M. N., Primenenie polyarizatsionnoi radiometrii v distantsionnom zondirovanii: istoriya i perspektivy (Application of polarization radiometry in remote sensing: history and prospects), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Vol. 1, No. 1, pp. 58–69.
  11. Pospelov M. N., Goryachkin Yu. A., Komarova N. Yu., Kuzmin A. V., Repina I. A., Sitnyanskii B. D., Smirnov M. T., Kompleksnyi radiofizicheskii eksperiment po distantsionnomu zondirovaniyu morskoi poverkhnosti CAPMOS’05 (Complex radiophysical experiment on remote sensing of the sea surface CAPMOS’05), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2007, Vol. 4, No. 1, pp. 337–348.
  12. Sadovskii I. N., Polyarizatsionnye radioteplovye metody v issledovaniyakh parametrov morskogo volneniya: Dis. … kand. fiz.-mat. nauk (Polarization of radio techniques in the study of parameters of sea waves: Cand. phys. and math. sci. thesis), Moscow, 2007, 184 p.
  13. Terekhin Yu. V., Pustovoitenko V. V., Vliyanie temperatury i solenosti morskoi vody na kharakteristiki radiolokatsionnogo signala SVCh-diapazona (Influence of sea water temperature and salinity on microwave radar signal characteristics), Issledovanie Zemli iz kosmosa, 1986, No. 2, pp. 16–21.
  14. Blume H. J.C., Kendall B. M., Fedors J. C., Measurement of ocean temperature and salinity via microwave radiometry, Boundary-Layer Meteorology, 1978, No. 13, pp. 295–308.
  15. Chen P., Yin Q., Huang P., Effect of non-Gaussian properties of the sea surface on the low-incidence radar backscatter and its inversion in terms of wave spectra by an ocean wave, Chinese J. Oceanology and Limnology, 2015, Vol. 33, No. 5, pp. 1142–1156.
  16. Cox C., Munk W., Measurements of the roughness of the sea surface from photographs of the sun glitter, J. Optical Society of America, 1954, Vol. 44, No. 11, pp. 838–850.
  17. Hejazin Y., Jones W. L., Santos-Garcia A., Jacob M. M., El-Nimri S. F., A roughness correction for aquarius sea surface salinity using the CONAE microwave radiometer, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, No. 12, pp. 5500–5510.
  18. Klemas V., Remote sensing of sea surface salinity: an overview with case studies, J. Coastal Research, 2011, Vol. 27, No. 5, pp. 830–838.
  19. Kudryavtsev V., Hauser D., Caudal G., Chapron B., A semiempirical model of the normalized radar cross-section of the sea surface, 1, Background model, J. Geophysical Research, 2002, Vol. 107, No. C3, 8054, DOI:10.1029/2001JC001003.
  20. Meissner T., Wentz F., An updated analysis of the ocean surface wind direction signal in passive microwave brightness temperatures, IEEE Trans. Geoscience and Remote Sensing, 2002, Vol. 40, No. 6, pp. 1230–1240.
  21. Meissner T., Wentz F. J., The complex dielectric constant of pure and sea water from microwave satellite observations, IEEE Trans. Geoscience and Remote Sensing, 2004, Vol. 42, No. 9, pp. 1836–1849.
  22. Moore R. K., Pierson W. J., Measuring sea state and estimating surface winds from a polar orbiting satellite, Proc. Intern. Symp. Electromagnetic Sensing of the Earth from Satellites, Miami Beach, FL, 1966, pp. R1–R28.
  23. Plant J. W., A stochastic, multiscale model of microwave backscatter from the ocean, J. Geophysical Research, 2002, Vol. 107, No. C9, 3120, DOI: 10.1029/2001JC000909.
  24. Valenzuela G., Theories for the interaction of electromagnetic and ocean waves ― A Review, Boundary Layer Meteorology, 1978, Vol. 13, No. 1–4, pp. 61–85.
  25. Wilheit T. T., A model for the microwave emissivity of the ocean’s surface as a function of wind speed, IEEE Trans. Geoscience Electronics, 1979, Vol. 17, No. 4, pp. 244–249.
  26. Wu B. H., Wang X., Ma H., Li S., Sensitivity analysis of ocean microwave radiation characteristics, Advanced Materials Research, 2013, Vol. 726–731, pp. 4718–4722.
  27. Zapevalov A. S., Bragg scattering of centimeter electromagnetic radiation from the sea surface: The effect of waves longer than Bragg components, Izvestiya ― Atmospheric and Ocean Physics, 2009, Vol. 45, No. 2, pp. 253–261.