ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 221-235

Nitrogen dioxide content in the troposphere of Western Siberia according to satellite observations. Spatio-temporal variability

T.V. Russkova 1 , P.N. Zenkova 1 
1 V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
Accepted: 29.10.2018
DOI: 10.21046/2070-7401-2018-15-7-221-235
The growth of industrial production in some regions of the world and the widespread extension of transport and logistics systems are accompanied by permanent pollution of the atmosphere as a result of the emission of various gas impurities, including nitrogen oxides. The considerable volume of satellite observations accumulated to date allows us to estimate the long-term changes in the concentration of nitrogen dioxide on a global scale, as well as to identify the geographical location of its sources. To estimate the spatial and temporal variability of the NO2 content, long-term measurement data from an OMI spectrometer located on the Aura satellite is used. An example of the average annual distribution of NO2 in the troposphere of the eastern hemisphere, demonstrating the largest zones of anthropogenic pollution, is given. On the territory of Russia, there is a lengthy plume of pollution that extends from the western borders of the country to the eastern borders of Krasnoyarsk Kray covering most of Western Siberia. The results of the analysis of the nitrogen dioxide content in the troposphere of Western Siberia from 2005 to 2016 are presented. It is shown that the spatial distribution of gas concentration in the air basin of the region is of latitudinal nature with a decrease in values in the south-east and north directions. The lowest NO2 content is in hard-to-reach, as well as in the least populated and developed areas of the region such as Yamalo-Nenets and Khanty-Mansiysk Autonomous Districts and Altai Republic. Federal highways, large cities and industrial centers form zones of increased air pollution. While using long-term changes of nitrogen dioxide concentration, the estimates of its linear trends are obtained and the features of its seasonal variability are determined.
Keywords: nitrogen dioxide, OMI spectrometer, troposphere, spatio-temporal variability, Western Siberia
Full text


  1. Bezuglaya E. Yu., Smirnova I. V., Vozdukh gorodov i ego izmeneniya (The air of cities and its changes), Saint Petersburg: Asterion, 2008, 253 p.
  2. Gosudarstvennyi doklad O sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2016 godu” (State report “On the state and protection of the environment of the Russian Federation in 2016”), Moscow: Minprirody Rossii; NIA-Priroda, 2017. 760 p.
  3. Ezhegodnik Sostoyanie zagryazneniya atmosfery v gorodakh na territorii Rossii za 2016 g.” (Yearbook “The state of atmospheric pollution in cities in Russia for 2016”), Saint Petersburg, 2017, 228 p.
  4. Elokhov A. S., Gruzdev A. N., Izmereniya obshchego soderzhaniya i vertikal’nogo raspredeleniya NO2 na Zvenigorodskoi nauchnoi stantsii (The measurements of NO2 total content and vertical distribution at Zvenigorod scientific station), Izvestiya RAN. Fizika atmosfery i okeana, 2000, Vol. 36, No. 6, pp. 831–846.
  5. Ionov D. V., Timofeev Yu. M., Regional’nyi kosmicheskii monitoring soderzhaniya dvuokisi azota v tropo­sfere (Regional space monitoring of nitrogen dioxide content in the troposphere), Izvestiya RAN. Fizika atmosfery i okeana, 2009, Vol. 45, No. 4, pp. 467–476.
  6. Khvan T. A., Khvan P. A., Bezopasnost’ zhiznedeyatel’nosti (Life safety), Rostov: Feniks, 2003, 416 p.
  7. Beirle S., Platt U., Wenig M., Wagner T., Weekly Cycle of NO2 by GOME Measurements: A Signature of Anthropogenic Sources, Atmospheric Chemistry and Physics, 2003, Vol. 3, No. 6, pp. 2225–2232.
  8. Boersma K. F., Eskes H. J., Brinksma E. J., Error analysis for tropospheric NO2 retrievals from space, J. Geophysical Research, 2004, Vol. 109, No. D04311.
  9. Boersma K. F., Eskes H. J., Dirksen R. J., Van der A R. J., Veefkind J. P., Stammes P., Veefkind J. P., Sneep M., Claas J., Leitao J., Richter A., Zhou Y., Brunner D., An improved tropospheric NO2 column retrieval algorithm for the ozone monitoring instrument, Atmospheric Measurement Techniques, 2011, Vol. 4, No. 9, pp. 1905–1928.
  10. Bovensmann H., Burrows J. P., Buchwitz M., Frerick J., Noël S., Rozanov V. V., Chance K. V., Goe­de A. P. H., SCIAMACHY: Mission Objectives and Measurement Modes, J. Atmospheric Sciences, 1999, Vol. 56, No. 2, pp. 127–150.
  11. Bucsela E. J., Krotkov N. A., Celarier E. A., Lamsal L. N., Swartz W. H., Bhartia P. K., Boersma K. F., Veefkind J. P., Gleason J. F., Pickering K. E., A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI, Atmospheric Measurement Technique, 2013, Vol. 6, No. 10, pp. 2607–2626.
  12. Burrows J. P., Weber M., Buchwitz M., Rozanov V. V., Ladstätter-Weißenmayer A., Richter A., DeBeek R., Hoogen R., Bramstedt K., Eichmann K.-U., Eisinger M., The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results, J. Atmospheric Sciences, 1999, Vol. 56, No. 2, pp. 151–175.
  13. Castellanos P., Boersma K. F., Torres O., de Haan J. F., OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols, Atmospheric Measurement Technique, 2015, Vol. 8, No. 9, pp. 3831–3849.
  14. Celarier E. A., Brinksma E. J., Gleason J. F., Veefkind J. P., Cede A., Herman J. R., Ionov D., Goutail F., Pommereau J-P., Lambert J-C., van Roozendael M., Pinardi G., Wittrock F., Schönhardt A., Richter A., Ibrahim O. W., Wagner T., Bojkov B., Mount G., Spinei E., Chen C. M., Pongetti T. J., Sander S. P., Bucsela E. J., Wenig M. O., Swart D. P. J., Volten H., Kroon M., Levelt P. F., Validation of Ozone Monitoring Instrument Nitrogen Dioxide Columns, J. Geophysical Research, 2008, Vol. 113, No. D15S08.
  15. Kiesewetter G., Borken-Kleefeld J., Schöpp W., Heyes C., Bertok I., Thunis P., Bessagnet B., Terrenoi­re E., Amann M., Modelling Compliance with NO2 and PM10 Air Quality Limit Values in the GAINS Model, TSAP Report, 2013, 76 p.
  16. Levelt P. F., van den Oord G. H. J., Dobber M. R., Malkki A., Visser H., de Vries J., Stammes P., Lun­dell J., Saari H., The Ozone Monitoring Instrument, IEEE Trans. Geoscience and Remote Sensing, 2006, Vol. 44, No. 5, pp. 1093–1101.
  17. Liu F., Beirle S., Zhang Q., Dörner S., He K., Wagner T., NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations, Atmospheric Chemistry and Physic, 2016, Vol. 16, No. 8, pp. 5283–5298.
  18. Lorente A., Boersma K. F., Yu H., Dörner S., Hilboll A., Richter A., Liu M., Lamsal L. N., Barkley M., De Smedt I., Van Roozendael M., Wang Y., Wagner T., Beirle S., Lin J.-T., Krotkov N., Stammes P., Wang P., Henk J., Eskes H. J., Krol M., Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, Atmospheric Measurement Technique, 2017, Vol. 10, No. 3, pp. 759–782.
  19. McPeters R. D., Krueger A. J., Bhartia P. K., Herman J. R., Oaks A., Ahmad Z., Cebula R. P., Schle­singer B. M., Swissler T., Taylor S. L., Torres O., Wellemeyer C. G., Nimbus-7 Total Ozone Mapping Spectro­meter (TOMS) Data Products User’s Guide, Technical Report, 1993, available at: (April 10, 2018).
  20. Paraschiv S., Constantin D. E., Paraschiv S. L., Voiculescu M., OMI and Ground-Based In-Situ Tropospheric Nitrogen Dioxide Observations over Several Important European Cities during 2005–2014, Intern. J. Environmental Research and Public Health, 2017, Vol. 14, No. 11, p. E1415.
  21. Prather M., Ehhalt D., Dentener F., Derwent R., Grubler A., Atmospheric chemistry and greenhouse gases, Climate Change 2001: The Scientific Basis, Third Assessment Report. Working Group I of the Intergovernmental Panel on Climate Change, 2001, Ch. 4, pp. 239–289.
  22. Richter A., Burrows J. P., Nüss H., Granier C., Niemeier U., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 2005, Vol. 437, No. 7055, pp. 129–132.
  23. Schmidt C. W., Beyond a One-Time Scandal: Europe’s Ongoing Diesel Pollution Problem, Environmental Health Perspectives, 2016, Vol. 124, No. 1, pp. A19–A22.
  24. Seinfeld J. H., Pandis S. N., Atmospheric Chemistry and Physics: From Air Pollution to climate Change, New York: Whiley, 2016, 1152 p.
  25. Van der A R. J., Eskes H., Boersma K. F., van Noije T. P. C., Van Roozendael M., De Smedt I., Peters D. H. M. U., Meijer E. W., Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space, J. Geophysical Research, 2008, Vol. 113, No. D04302.
  26. Veefkind J. P., Aben I., McMullan K., Förster H., De Vries J., Otter G., Claas J., Eskes H. J., De Haan J. F., Kleipool Q., Van Weele M., Hasekamp O., Hoogeveen R., Landgraf J., Snel R., Tol P., Ingmann P., Voors R., Kruizinga B., Vink R., Visser H., Levelt P. F., TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications, Remote Sensing of Environment, 2012, Vol. 120, pp. 70–83.