ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 153-162

Spatial variability of primary production and regionalization of the Kara Sea from MODIS-Aqua data

A.B. Demidov 1 , S.V. Sheberstov 1 , V.I. Gagarin 1 
1 Shirshov Institute of Oceanology RAS, Moscow, Russia
Accepted: 29.10.2018
DOI: 10.21046/2070-7401-2018-15-7-153-162
For the first time spatial variability of water column primary production (IPP) and regionalization of the Kara Sea were performed using region-specific models and MODIS-Aqua data. Region-specific empirical IPP and chlorophyll algorithms were developed and verified based on field observations in autumn (predominantly in September and October). On the basis of multiyear (2002–2015) averaged data we assigned six productivity regions in the Kara Sea. Inherent property of Ob and Enisey estua­ries is low (<10 psu) annual averaged surface salinity. Inner (<100 m) and Outer shelf (100–200 m) are influenced by river discharge year round. Alternatively, Southwestern region is under river discharge to a lesser degree. The Northwestern region and Northeastern region coincide with St. Anna trough and Voronin’s trough, respectively. Regionally averaged primary production values ranged from 109 to 264 mgC/m 2 per day that corresponds to mesotrophic level of IPP. Latitudinal and longitudinal zonality in IPP distribution was established in the Kara Sea river discharge region and northern region, respectively.
Keywords: primary production, chlorophyll, spatial variability, remote sensing, regionalization
Full text

References:

  1. Bakanov A. I., Osnovy fiziko-geograficheskogo raionirovaniya (Fundamentals of physiographic zoning), In: Ekologicheskoe raionirovanie presnovodnykh vodoemov (Ecological zoning of freshwater basins), Rybinsk: IBVV AN SSSR, 1990, pp. 16–41.
  2. Blanutsa V. I., Integral’noe ekologicheskoe raionirovanie: kontseptsiya i metody (Integral ecological regionali­zation: conception and methods), Novosibirsk: Nauka, 1993, 158 p.
  3. Vinogradov M. E., Razvitie pelagicheskikh soobshchestv i bioticheskii balans okeana (Evolution of pelagic communities and biotic balance of the ocean), In: Okeanologiya na starte XXI veka (Oceanology at the start of XXI centuary), Vereshchaka A. L. (ed.), Moscow: Nauka, 2008, pp. 257–292.
  4. Demidov A. B., Sheberstov S. V., Gagarin V. I., Khlebopashev  P. V., Sezonnaya izmenchivost’ pervichnoi produktsii fitoplanktona Karskogo morya po sputnikovym dannym (Seasonal variation of Kara Sea phytoplankton primary production with satellite observations), Okeanologiya, 2017, Vol. 57, No. 1, pp. 103–117.
  5. Egorov A. G., Osobennosti sezonnykh i mezhgodovykh izmenenii sostoyaniya ledovogo pokrova Karskogo morya (Features of seasonal and interannual changes in the ice cover of the Kara Sea), In: Led zapadnykh arkticheskikh morei (Ice of Western Arctic Seas), Zubatkin G. K. (ed.), St. Petersburg: AANII, 2006, pp. 26–46.
  6. Koblents-Mishke O. I., Vedernikov V. I., Pervichnaya produktsiya (Primary production), In: Biologiya okea­na, T. 2: Biologicheskaya produktivnost’ okeana (Biology of the ocean, Vol. 2: Biological productivity of the ocean), Moscow: Nauka, 1977, pp. 183–209.
  7. Kuznetsova O. A., Kopelevich O. V., Sheberstov S. V., Burenkov V. I., Mosharov S. A., Demidov A. B., Otsenka kontsentratsii khlorofilla v Karskom more po dannym sputnikovogo skanera MODIS-AQUA (Estimation of chlorophyll concentration in the Kara Sea with MODIS-Aqua data), Issledovanie Zemli iz kosmosa, 2013, No. 5, pp. 21–31.
  8. Lisitsin A. P., Rasseyannyi osadochnyi material biosfery morei i okeanov (Scattered sediment material of seas and oceans), In: Mirovoi ocean. T. 2. Fizika, khimiya i biologiya okeana. Osadkoobrazovanie v okeane i vzaimodeistvie geosfer Zemli (World Ocean. Vol. 2: Physics, chemistry and biology of the ocean. Sediment formation in the ocean and interaction of the Earth’s geospheres), Nigmatulin R. I., Lobkovskii L. I. (eds.), Moscow: Nauchnyi mir, 2014, pp. 424–464.
  9. Carder K. L., Chen F. R., Cannizzaro J. P., Campbell J. W., Mitchell B. G., Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a, Advances in Space Research, 2004, Vol. 33, pp. 1152–1159.
  10. Cloern J. E., Jassby A. D., Complex seasonal patterns of primary producers at the land-sea interface, Ecology Letters, 2008, Vol. 11, pp. 1294–1303.
  11. Demidov A. B., Mosharov S. A., Makkaveev P. N., Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer, J. Marine Systems, 2014, Vol. 132, pp. 130–149.
  12. Demidov A. B., Kopelevich O. V., Mosharov S. A., Sheberstov S. V., Vazyulya S. V., Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms, J. Sea Research, 2017, Vol. 125, pp. 1–17.
  13. Demidov A. B., Gagarin V. I., Vorobieva O. V., Makkaveev P. N., Artemiev V. A., Khrapko A. N., Grigori­ev A. V., Sheberstov S. V., Spatial and vertical variability of primary production in the Kara Sea in July and August 2016: The influence of the river plume and subsurface chlorophyll maxima, Polar Biology, 2018, Vol. 41, No. 3, pp. 563–578, DOI: 10.1007/s00300-017-2217-x.
  14. Fay A. R., McKinley G. A., Global trends in surface ocean pCO2 from in situ data, Global Biogeochemical Cycles, 2013, Vol. 27, pp. 541–557.
  15. Frouin R., McPherson J., Ueyoshi K., Franz B. A., A time series of photosynthethetically available radiation at the ocean surface from SeaWiFS and MODIS data, Proc. SPIE Asia-Pacific Remote Sensing, 2012, Vol. 8525, 12 p., URL: https://doi.org/10.1117/12.981264.
  16. Hill V. J., Matrai P. A., Olson E., Suttles S., Steele  M., Codispoti L. A., Zimmerman R. C., Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates, Progress in Oceanography, 2013, Vol. 110, pp. 107–125.
  17. Kubryakov A., Stanichny S., Zatsepin A., River plume dynamics in the Kara Sea from altimetry-based lagrangian model, satellite salinity and chlorophyll data, Remote Sensing of Environment, 2016, Vol. 176, pp. 177–187.
  18. Lewis K. M., Mitchell B. G., van Dijken G. L., Arrigo K. R., Regional chlorophyll a algorithms in the Arctic Ocean and their effect on satellite-derived primary production estimates, Deep Sea Research. Part II: Topical Studies in Oceanography, 2016, Vol. 130, pp. 14–27.
  19. Longhurst A., Sathyendranath S., Platt T., Caverhill C., An estimate of global primary production in the ocean from satellite radiometer data, J. Plankton Research, 1995, Vol. 17, pp. 1245–1271.
  20. Sheberstov S. V., Lukyanova E. A., A system for acquisition, processing, and storage of satellite and field biooptical data, 4th Intern. Conf. Current problems in optics of natural waters”, Proc. Conf., Nizhny Novgorod, 2007, pp. 179–183.
  21. Winter P. E.D., Schlacher T. A., Baird D., Carbon flux between an estuary and the ocean: a case for outwelling, Hydrobiology, 1996, Vol. 337, pp. 123–132.