ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 7, pp. 236-248

Spatial variability of aerosol optical thickness on the territory of Moscow and Moscow Region by satellite and ground based data

E.Yu. Zhdanova 1 , N.Ye. Chubarova 1 
1 Lomonosov Moscow State University, Moscow, Russia
Accepted: 15.10.2018
DOI: 10.21046/2070-7401-2018-15-7-236-248
Spatial variability of aerosol optical thickness (AOT) is estimated based on satellite data of the state-of-the-art VIIRS radiometer on the territory of Moscow and Moscow Region. The VIIRS radiometer is the latest generation sensor on board the polar-orbiting satellite Suomi National Polar-orbiting Partnership (Suomi NPP). It is shown that higher satellite retrieval AOT are observed in the center of the city in comparison with suburb territory. But reliability of the determined difference in AOT between suburb territory and the city center is not high enough due to uncertainties of satellite algorithms in evaluation of surface reflectance. It is also revealed that AOT retrieval VIIRS algorithm has additional uncertainties connected with the choice of aerosol model for Moscow region. Methodology of satellite AOT correction according to ground based measurements of CIMEL solar photometer (AERONET) at Meteorological Observatory of Moscow State University is proposed. Based on the obtained corrected AOT, spatial distribution of UV radiation is estimated taking into account distribution of AOT on the territory of Moscow and Moscow Region. Spatial variations of UV indexes for the considered case study exceed 15 % and reach 1 UV index due to inhomogeneity of aerosol distribution.
Keywords: aerosol, aerosol optical thickness, Moscow, satellite retrievals, VIIRS, MODIS
Full text

References:

  1. Gubanova D. P., Belikov I. B., Elanskii N. F., Skorokhod A. I., Chubarova N. E., Izmenchivost’ prizemnoi kontsentratsii aerozolei PM2.5 v g. Moskve po nablyudeniyam v Meteorologicheskoi observatorii MGU (Variability of PM2.5 surface concentrations in Moscow according to MSU meteorological observatory data), Optika atmosfery i okeana, 2017, Vol. 30, No. 12, pp. 1033–1042.
  2. Khlestova Yu. O., Chubarova N. E., Osnovnye kharakteristiki aerozolya po dannym solnechno-nebesnogo fotometra CIMEL seti AERONET (The main characteristics of aerosols according to the measurements of sun and sky CIMEL photometer AERONET network), In: Ekologo-klimaticheskie kharakteristiki atmosfery v 2016 g. po dannym meteorologicheskoi observatorii MGU imeni M. V. Lomonosova (Environmental and Climate Characteristics of the atmosphere in 2016 according to the measurements of the Meteorological Observatory of Moscow State University), Moscow: MAKS Press, 2017, pp. 162–174.
  3. Chubarova N. Y., Sviridenkov M. A., Smirnov A., Holben B. N., Assessments of urban aerosol pollution in Moscow and its radiative effects, Atmospheric Measurement Techniques, 2011, Vol. 4, No. 2, pp. 367–378.
  4. Dubovik O., Holben B., Eck T. F., Smirnov A., Kaufman Y. J., King M. D., Tanre D., Slutsker I., Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmospheric Sciences, 2002, Vol. 59, No. 3, pp. 590–608.
  5. Gupta P., Khan M. N., da Silva A., Patadia F., MODIS aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring, Atmospheric Pollution Research, 2013, Vol. 4, No. 1, pp. 43–52.
  6. Holben B. N., Eck T. F., Slutsker I., Tanre D., Buis J. P., Setzer A., Vermote E., Reagan J. A., Kaufman Y. J., Nakajimu T., Lavenu F., Jankowiak I., Smirnov A., AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 1998, Vol. 66, No. 1, pp. 1–16.
  7. Jackson J. M., Liu H., Laszlo I., Kondragunta S., Remer L. A., Huang J., Huang H. C., Suomi-NPP VIIRS aerosol algorithms and data products, J. Geophysical Research: Atmospheres, 2013, Vol. 118, No. 22, pp. 12673–12689.
  8. Lee J., Kim J., Song C. H., Kim S. B., Chun Y., Sohn B. J., Holben B. N., Characteristics of aerosol types from AERONET sunphotometer measurements, Atmospheric Environment, 2010, Vol. 44, No. 26, pp. 3110–3117.
  9. Levy R. C., Remer L. A., Kleidman R. G., Mattoo S., Ichoku C., Kahn R., Eck T. F., Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmospheric Chemistry and Physics, 2010, Vol. 10, No. 21, pp. 10399–10420.
  10. Liu H., Remer L. A., Huang J., Huang H. C., Kondragunta S., Laszlo I., Min O., Jackson J. M., Preliminary evaluation of S-NPP VIIRS aerosol optical thickness, J. Geophysical Research: Atmospheres, 2014, Vol. 119, No. 7, pp. 3942–3962.
  11. Mishchenko M. I., Geogdzhayev I. V., Cairns B., Carlson B. E., Chowdhary J., Lacis A. A., Liu L., Rossowa W. B., Travis L. D., Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective, J. Quantitative Spectroscopy and Radiative Transfer, 2007, Vol. 106, No. 1–3, pp. 325–347.
  12. Munchak L. A., Levy R. C., Mattoo S., Remer L. A., Holben B. N., Schafer J. S., Hostetler C. A., Ferrare R. A., MODIS 3 km aerosol product: applications over land in an urban/suburban region, Atmospheric Measurement Techniques, 2013, Vol. 6, No. 7, pp. 1747–1759.
  13. Petrenko M., Ichoku C., Leptoukh G., Multi-sensor aerosol products sampling system (MAPSS), Atmospheric Measurement Techniques, 2012, Vol. 5, No. 5, pp. 913–926.
  14. Remer L. A., Mattoo S., Levy R. C., Munchak L. A., MODIS 3 km aerosol product: algorithm and global perspective, Atmospheric Measurement Techniques, 2013, Vol. 6, No. 7, pp. 1829–1844.
  15. Van Donkelaar A., Martin R. V., Levy R. C., da Silva A. M., Krzyzanowski M., Chubarova N. E., Semutnikova E., Cohen A. J., Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010, Atmospheric Environment, 2011, Vol. 45, No. 34, pp. 6225–6232.
  16. Wang W., Pan Z., Mao F., Gong W., Shen L., Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements, Intern. J. Environmental Research and Public Health, 2017, Vol. 14, No. 9, p. 1016.
  17. Wong M. S., Lee K. H., Nichol J. E., Li Z., Retrieval of Aerosol Optical Thickness Using MODIS 500×500 m2, a Study in Hong Kong and the Pearl River Delta Region, IEEE Trans. Geoscience and Remote Sensing, 2010, Vol. 48, No. 8, pp. 3318–3327.