ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 169-179

Simulation of optical navigation measurements during vertical descent onto the lunar surface

B.S. Zhukov 1 , V.A. Grishin 1 , S.B. Zhukov 1 , T.V. Kondratieva 1 , A.G. Tuchin 2 , V.S. Yaroshevsky 2 
1 Space Research Institute RAS, Moscow, Russia
2 Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
Accepted: 02.11.2018
DOI: 10.21046/2070-7401-2018-15-6-169-179
Computer simulations were performed of optical navigation measurements during the final stage of landing on the lunar surface when, after approaching the landing area, the spacecraft descends nearly vertically from a height of ~2 km. For this purpose, navigation camera images of the lunar surface were simulated with the interval of 1 s and the resolution improving from 1 m to 2 cm along a typical descent trajectory. The principal tasks of optical navigation during vertical descent can be construction of a risk map and using it to select a safe landing site, as well as measuring the horizontal velocity of the spacecraft. The accuracy of height and vertical velocity optical measurements was found to be insufficient. The proposed approach to risk map generation is based on analyzing image photometric nonhomogeneity that is related to complexity of surface relief. Its advantages are simplicity, fast image processing, shadow detection and the absence of significant requirements to spacecraft attitude and velocity stabilization. This makes it feasible to back-up a laser scanner for risk map generation. The spacecraft horizontal velocity was estimated by measuring landmark displacement in consecutive images using additional radio altimeter height measurements. The velocity estimation error decreased from ~1 m/s at heights more than 1 km to ~10 cm/s at 100 m and to ~1 cm/s below 20 m. Thus, this method can complement Doppler horizontal velocity measurements at small heights.
Keywords: autonomous optical navigation, landing on the Moon, measuring spacecraft horizontal velocity, risk map, landing site selection
Full text

References:

  1. Avanesov G. A., Gordeev R. V., Grishin V. A., Zhukov B. S., Zhukov S. B., Kolomeets E. V., Krasnopevtseva E. B., Kudelin M. I., Krupin A. A., Murav’ev V. M., Forsh A. A., Televizionnaya sistema navigatsii i nablyudeniya (TV system for navigation and observation), Astronomicheskii Vestnik, 2010, Vol. 4, No. 5, pp. 473–479.
  2. Vizilter Yu. V., Zheltov S. Yu., Bondarenko A. V., Osokov M. V., Morzhin A. V., Obrabotka i analiz izobrazhenii v zadachakh mashinnogo zreniya (Processing and analysis of images in computer vision tasks), Moscow: Fizmatgiz, 2010, 672 p.
  3. Grishin V. A., Algoritmy izmereniya vysoty i component skorosti po televisionnym izobrazheniyam pri posadke na Fobos (Algorithms for measuring the height and velocity components of television images when landing on Phobos), Vserossiiskaya nauchno-tekhnicheskaya konferentsiya Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov”, Proc., Seriya “Mekhanika, upravlenie i informatika” (Proc. All-Russia Scientific and Technical Conf. “Modern Problems of Determining the Orientation and Navigation of Spacecraft”, Ser. “Mechanics, control, and informatics”), Russia, Tarusa, 22–25 Sept. 2008, Moscow, IKI RAS, 2009, pp. 279–293.
  4. Zhukov B. S., Zhukov S. B., Algoritm avtonomnogo vybora mesta posadki KA “Fobos-Grunt” po televizionnym izobrazheniyam (Algorithm of autonomous selection of the “Phobos-Grunt” s/c landing site by TV images), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 281–288.
  5. Zhukov B. S., Grishin V. A., Zhukov S. B., Kondratieva T. V., Tuchin A. G., Yaroshevskii V. S., Modelirovanie opticheskikh navigatsionnykh izmerenii na traektorii podleta k raionam posadki na Lunu (Simulation of optical navigation measurements at the approach trajectory to the lunar landing areas), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15., No. 6, pp. 154–168.
  6. Lavrenov S. M., Mikhaylin D. A., Tuchin A. G., Tuchin D. A., Yaroshevskiy V. S., Matematicheskaya model’ DISD v proektakh myagkoi posadki na Lunu (DISD mathematical model in projects of soft landing on the Moon), Preprinty IPM im. M. V. Keldysha, 2013, No. 68, p. 15, URL: http://library.keldysh.ru/preprint.asp?id=2013-68.
  7. Hapke B. W., Theory of reflectance and emittance spectroscopy, New York, Cambridge Univ. Press., 1993, 455 p.
  8. Viola P. A., Jones M. J., Rapid object detection using a boosted cascade of simple features, Proc. Conf. on Computer Vision and Pattern Recognition, Kauai, Hawaii, 8–14 December 2001, Vol. 1, pp. 511–518.