ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 154-168

Simulation of optical navigation measurements at the approach trajectory to the lunar landing areas

B.S. Zhukov 1 , V.A. Grishin 1 , S.B. Zhukov 1 , T.V. Kondratieva 1 , A.G. Tuchin 2 , V.S. Yaroshevsky 2 
1 Space Research Institute RAS, Moscow, Russia
2 Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
Accepted: 02.11.2018
DOI: 10.21046/2070-7401-2018-15-6-154-168
Autonomous optical navigation at the approach trajectory to the landing areas in the future lunar missions can significantly reduce spacecraft trajectory measurement errors and thus improve the approach accuracy. Computer simulations were performed of optical navigation measurements at a typical approach trajectory where in the process of main braking the spacecraft altitude decreases along the trajectory from 18 to 2 km. For this purpose, navigation camera images of the Moon were simulated with the interval of 1 s and the resolution improving from 30 to 3 m along the trajectory. Spacecraft position was estimated at the image acquisition time using control points with known selenographic coordinates (absolute navigation) and in case of insufficient number of control points ― using tie points that were well recognized in consecutive images (relative navigation). When the available global topographic model of the Moon LOLA-256P with the resolution of 118 m was used to define control points, the absolute optical navigation was found to be feasible only at altitudes higher than ~6.5 km. At this part of the trajectory, the root-mean-squared (RMS) error of spacecraft horizontal coordinates and altitude estimation was ~20 and ~35 m respectively. Relative navigation at lower altitudes resulted in a systematic increase of the trajectory errors to 200–300 m. A task of the future Luna-26 mission is topographic mapping of approach trajectory areas to the potential lunar landing sites with a resolution of ~10 m to provide high-resolution control point definition. Simulations show that in this case the absolute optical navigation will be feasible at the total approach trajectory, with the RMS-errors of 8–9 m for spacecraft horizontal coordinates and of ~13 m for its altitude. It is expected that synergetic processing of inertial and optical navigation measurements will further increase trajectory measurement accuracy and stability.
Keywords: autonomous optical navigation, absolute navigation, relative navigation, landing on the Moon
Full text

References:

  1. Avanesov G. A., Gordeev R. V., Grishin V. A., Zhukov B. S., Zhukov S. B., Kolomeets E. V., Krasnopevtseva E. B., Kudelin M. I., Krupin, A. A., Murav’ev V. M., Forsh A. A., Televizionnaya sistema navigatsii i nablyudeniya (TV system for navigation and observation), Astronomicheskii vestnik, 2010, Vol. 4, No. 5, pp. 473–479.
  2. Vizilter Yu. V., Zheltov S. Yu., Bondarenko A. V., Osokov M. V., Morzhin A. V., Obrabotka i analiz izobrazhenii v zadachakh mashinnogo zreniya (Processing and analysis of images in computer vision tasks), Moscow: Fizmatgiz, 2010, 672 p.
  3. Grishin V. A., Algoritmy izmereniya vysoty i component skorosti po televisionnym izobrazheniyam pri posadke na Fobos (Algorithms for measuring the height and velocity components of television images when landing on Phobos), Vserossiiskaya nauchno-tekhnicheskaya konferentsiya Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov”, Proc., Seriya “Mekhanika, upravlenie i informatika” (All-Russia Scientific and Technical Conf. “Modern Problems of Determining the Orientation and Navigation of Spacecraft”, Proc., Ser. “Mechanics, control, and informatics”), Russia, Tarusa, 22–25 Sept. 2008, Moscow, IKI RAN, 2009, pp. 279–293.
  4. Zhukov B. S., Polyansky I. V., Zhukov S. B., Modelirovanie avtonomnoi opticheskoi navigatsii pri vertikal’nom spuske na poverkhnost’ Luny (Autonomous optical navigation in circumlunar orbits and during landing on the Moon using a super-wide-angle camera), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 2, pp. 24–35.
  5. Zhukov B. S., Grishin V. A., Zhukov S. B., Kondratieva T. V., Tuchin A. G., Yaroshevskiy V. S., Modelirovanie avtonomnoi opticheskoi navigatsii pri vertikal’nom spuske na poverkhnost’ Luny (Simulation of optical navigation measurements during vertical descent on the lunar surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 169–179.
  6. Hapke B. W., Theory of Reflectance and Emittance Spectroscopy, New York: Cambridge Univ. Press, 1993, 455 p.
  7. Polyansky I., Zhukov B., Zubarev A., Nadejdina I., Brusnikin E., Oberst J., Duxbury T., Stereo Topographic Mapping Concept for the Upcoming Luna-Resurs-1 Orbiter Mission, Planetary and Space Science, 2017, URL: https://doi.org/10.1016/j.pss.2017.09.013.
  8. Viola P. A., Jones M. J., Rapid Object Detection Using a Boosted Cascade of Simple Features, Proc. Conf. on Computer Vision and Pattern Recognition, Kauai, Hawaii, 8–14 Dec. 2001, Vol. 1, pp. 511–518.