ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 201-212

Automation of in-flight geometric calibration of multispectral satellite imaging system KMSS-M on board Meteor-M No. 2 satellite

B.S. Zhukov 1 , S.B. Zhukov 1 , T.V. Kondratieva 1 , A.V. Nikitin 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 30.10.2018
DOI: 10.21046/2070-7401-2018-15-6-201-212
In-flight geometric calibration technique and software were developed for MSU-201 and MSU-202 cameras of the Multispectral Satellite Imaging System (KMSS-M) on board Meteor-M No. 2 satellite. The push-broom CCD cameras have a resolution of 60 m in three spectral bands of 0.535–0.575, 0.63–0.68 and 0.76–0.90 μm. The calibration is performed using a bank of ground control points (GCP) that is being developed on the basis of geo-referenced Sentinel images with the resolution of 10 m in the spectral bands similar to KMCC-M bands. The calibration is demonstrated using KMSS-M images of Aegean and Black sea shore, where from 287 to 714 GCP were recognized depending on channel and camera. The maximal GCP number were recognized in 0.76–0.90 μm channel, the minimal — in 0.535–0.575 μm channel. As a result, the parameters of the geometric camera model were defined: channel effective focal lengths and distortion parameters, as well as the orientation parameters of the channel reference systems in the auxiliary camera reference system that is fixed in the basic star sensor reference system. The residual GCP root-mean-square deviation from the projection function ranged from 0.23 to 0.42 pixel.
Keywords: KMSS-M, Meteor-M No. 2, in-flight geometric calibration, interior orientation parameters, ground control points, s/c Sentinel
Full text

References:

  1. Avanesov G. A., Polyanskii I. V., Zhukov B. S., Nikitin A. V., Forsh A. A., Kompleks mnogozonal’noi sputnikovoi sʺemki na bortu KA “Meteor-M” No. 1: tri goda na orbite (Multispectral Satellite Imaging System aboard the Meteor-M No. 1 spacecraft: Three years in orbit), Issledovanie Zemli iz kosmosa, 2011, No. 2, pp. 74–83.
  2. Vasil’ev A. I., Kalibrovka sʺemochnoi apparatury kosmicheskogo apparata “Kanopus-V” v protsesse ego ekspluatatsii (Calibration of Kanopus-V satellite sensor during its operation), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 1, pp. 203–214.
  3. Vizil’ter Yu. V., Zheltov S. Yu., Bondarenko A. V., Osokov M. V., Morzhin A. V., Obrabotka i analiz izobrazhenii v zadachakh mashinnogo zreniya (Image processing and analysis in technical vision problems), Moscow: Fizmatgiz, 2010, 672 p.
  4. Zhukov B. S., Vasileiskii A. S., Zhukov S. B., Ziman Ya. L., Polyanskii I. B., Bekrenev O. V., Permitina L. I., Predvaritel’naya obrabotka videodannykh KMSS c KA “Meteor-M” (KMSS/Meteor-M imaging data pre-processing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, No. 1, pp. 260–266.
  5. Katamanov S. N., Razrabotka avtomaticheskogo metoda geograficheskoi privyazki izobrazhenii MSU MR polyarno-orbital’nogo sputnika “Meteor-M” No. 1 (Development of automatic navigation method for MSU-MR imagery of polar-orbital satellite “Meteor-M” No. 1), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 4, pp. 276–285.
  6. Nikitin A. V., Dunaev B. S., Kondratieva T. V., Polyanskii I. V., Opredelenie geometricheskikh parametrov mnogozonal’nykh skaniruyushchikh ustroistv MSU-100, MSU-50 na laboratornom stende i v usloviyakh poleta kosmicheskogo apparata “Meteor-M” (Determination of geometrical parameters of multispectral scanners MSU-100 and MSU-50 on a laboratory bench and in flight on Meteor-M), 2-ya Vserossiiskaya nauchno-tekhnicheskaya konferentsiya Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov (2nd All-Russia Scientific and Technological Conf. “Contemporary Problems of Spacecraft Attitude Determination and Control”), Proc., Tarusa, 13–16 Sept., 2010, Moscow: IKI RAN, 2011, pp. 289–307.
  7. Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Modern technologies of Earth remote sensing data processing), V. V. Eremeev (ed.), Moscow: Fizmatlit, 2015, 460 p.
  8. Languille F., Déchoz C., Gaudel A., Greslou D., de Lussy F., Trémas T., Poulain V., Sentinel-2 geometric image quality commissioning: first results, Proc. SPIE, Image and Signal Processing for Remote Sensing XXI, 2015, Vol. 9643, DOI: 10.1117/12.2194339.
  9. Storey J., Roy D. P., Masek J., Gascon F., Dwyer J., Choate M., A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery, Remote Sensing of Environment, 2016, Vol. 186, pp. 121–122, URL: https://dx.doi.org/10.1016/j.rse.2016.08.025.