ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 6, pp. 213-222

Atmospheric correction of data registered on board the ISS. Part I. Methodology for spectra

M.Yu. Belyaev 1 , B.I. Belyaev 2 , D.A. Ivanov 2 , L.V. Katkovsky 2 , A.O. Martinov 2 , V.V. Riazantsev 1 , E.E. Sarmin 1 , O.O. Siliuk 2 , V.G.  Shukajlo 2 
1 S. P. Korolev Rocket and Space Public Сorporation “Energia”, Korolev, Russia
2 A. N. Sevchenko Institute of Applied Physical Problems of Belorussian State University, Minsk, Republic of Belarus
Accepted: 06.10.2018
DOI: 10.21046/2070-7401-2018-15-6-213-222
The paper describes a fast and fairly accurate method of atmospheric correction for spectra in the visible and near infrared spectral range registered by the photospectral (PhSS) and videospectral (VSS) systems from the International Space Station (ISS) during the Uragan space experiment.The model of the cloud free atmosphere that takes into account most significant processes of radiation transformation in the system underlying surface-atmosphere is described. The method is based on the determination of atmospheric parameters using the PhSS and VSS high resolution spectra by solving the inverse problem of atmospheric optics. Analytical formulas are given that describe outgoing radiation spectra of the atmosphere-surface system with high accuracy. The formulas are used in least squares method (the Levenberg-Marquordt algorithm) for fitting experimental spectra. The parameters of atmosphere and albedo of underlying surface are derived from spectra by ISS measurements. No additional a priori information on the condition of the atmosphere is required except imaging geometry, time and season. The proposed method is applicable practically unchanged to atmospheric correction of hyperspectral data.
Keywords: remote sensing, spectra, atmospheric correction, surface albedo
Full text

References:

  1. Belyaev B. I., Katkovskii L. V., Rogovets A. V., Vosstanovlenie spektrov zemnoi poverkhnosti s ispol’zovaniem tsvetnykh izobrazhenii vysokogo razresheniya (Surface spectra retrievement using high-resolution color images), Zhurnal prikladnoi spektroskopii, 2013, Vol. 80, No. 1, pp. 70–77.
  2. Belyaev B. I., Belyaev M. Yu., Desinov L. V., Katkovskii L. V., Krot Yu. A., Sarmin E. E., Rezul’taty ispytanii fotospektral’noi sistemy na MKS (Photospectral system test results on ISS), Issledovanie Zemli iz kosmosa, 2014, No. 6, pp. 27–39.
  3. Belyaev B. I., Belyaev M. Yu., Desinov L.V, Katkovskii L. V., Sarmin E. E., Obrabotka spektrov i izobrazhenii s fotospektral’noi sistemy v kosmicheskom eksperimente “Uragan” na MKS (Spectra and images processing from Photospectral system in space experiment “Hurricane” on the ISS), Issledovanie Zemli iz kosmosa, 2014, No. 6, pp. 54–65.
  4. Belyaev B. I., Belyaev M. Yu., Sarmin E. E., Gysev V. F., Desinov L. V., Ivanov V. A., Krot Yu. A., Martinov A. O., Ryazantsev V. V., Sosenko V. A., Ustroistvo i letnye ispytaniya nauchnoi apparatury “Videospektral’naya sistema” na bortu rossiiskogo segmenta MKS (Design and flight tests of science hardware “Video-spectral system” on board the Russian segment of the ISS), Kosmicheskaya tekhnika i tekhnologii, 2016, No. 2(13), pp. 70–79.
  5. Vasil’ev A. V., Kuznetsov A. D., Mel’nikova I. N., Distantsionnoe zondirovanie okruzhayushchei sredy iz kosmosa: praktikum (Remote sensing of the environment from space: a workshop), Saint-Petersburg: Baltiiskii gosudarstvennyi tekhnologicheskii universitet, 2008, 133 p.
  6. Vasil’ev A. V., Kuznetsov A. D., Mel’nikova I. N., Approksimatsiya mnogokratno rasseyannogo solnechnogo izlucheniya v ramkakh priblizheniya odnokratnogo rasseyaniya (Approximation of multiply scattered solar radiation in the framework of a single scattering), Mezhdunarodnyi simpozium Atmosfernaya radiatsiya i dinamika” (Intern. Symp. “Atmospheric Radiation And Dynamics”), Saint-Petersburg, 23–26 June 2015, Saint-Petersburg: Sankt-Peterburgskii gosudarstvennyi universitet, 2015, p. 131.
  7. Ginzburg A. S., Mel’nikova I. N., Samulenkov D. A., Sapunov M. V., Katkovskii L. V., Prostaya opticheskaya model’ bezoblachnoi i oblachnoi atmosfery dlya rascheta potokov solnechnoi radiatsii (Simple optical model of clear sky and cloudy atmosphere for calculation of solar irradiance), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 132–149.
  8. Katkovskii L. V., Parametrizatsiya ukhodyashchego izlucheniya dlya bystroi atmosfernoi korrektsii giperspektral’nykh izobrazhenii (Parameterization of outgoing radiation for quick atmospheric correction of hyperspectral image), Optika atmosfery i okeana, 2016, Vol. 29, No. 9, pp. 778–784.
  9. Minin I. N., Priblizhennye formuly dlya raschetov pogloshcheniya korotkovolnovogo izlucheniya v bezoblachnoi atmosphere (Approximate formulas for calculating the absorption of short-wave radiation in a cloudless atmosphere), Izvestiya AN SSSR. Fizika atmosfery i okeana, 1984, Vol. 20, No. 10, pp. 999–1001.
  10. Adler-Golden S. M., Matthew M. W., Bernstein L. S., Levine R. Y., Berk A., Richtsmeier S. C., Acharya P. K., Anderson G. P., Feldeb G., Gardner J., Hokeb M., Jeong L. S., Pukall B., Mello J., Ratkowski A., Burke H. H., Atmospheric correction for shortwave spectral imagery based on MODTRAN4, Proc. SPIE, 1999, Vol. 3753, DOI: 10.1117/12.366315.
  11. Bucholtz A., Rayleigh-scattering calculations for the terrestrial atmosphere, Applied Optics, 1995, Vol. 34, No. 15, pp. 2765–2773.
  12. Katsev I. L., Prikhach A. S., Zege E. P., Grudo J. O., Kokhanovsky A. A., Speeding up the aerosol optical thickness retrieval using analytical solutions of radiative transfer theory, Atmospheric Measurement Techniques, 2010, No. 3, DOI: 10.5194/amt-3-1403-2010.
  13. Kokhanovsky A. A., Mayer B., Rozanov V. V., A parameterization of the diffuse transmittance and reflectance for aerosol remote sensing problems, Atmospheric Research, 2005, No. 73, pp. 37–43.
  14. Leprieur C., Carrere V., Gu X. F., Atmospheric corrections and ground reflectance recovery for Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data: MAC Europe’91, Photogrammetric Engineering & Remote Sensing, 1995, Vol. 61, No. 10, pp. 1233–1238.
  15. Perkins T., Adler-Golden S., Matthew M. W., Berk A., Bernstein L. S., Lee J., Fox M., Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery, Optical Engineering, 2012, Vol. 51(11), DOI: 10.1117/1.OE.51.11.111707.
  16. Vermote E. F., Tanre D., Deuze J. L., Herman M., Morcrette J. J., Second Simulation of the Satellite Signal in the Solar Spectrum (6S), 6S User Guide Version 6.0, NASA-GSFC, 1994, p. 134.