Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 141-153
Land cover mapping of the Pechora-Ilych Nature Reserve and its vicinity based on reconstructed multitemporal Landsat satellite data
E.A. Gavrilyuk
1 , A.S. Plotnikova
1 , D.E. Plotnikov
2 1 Center for Forest Ecology and Productivity RAS, Moscow, Russia
2 Space Research Institute RAS, Moscow, Russia
Accepted: 15.10.2018
DOI: 10.21046/2070-7401-2018-15-5-141-153
The aim of this research was to create a new thematic map of forest and other land cover types for Pechora-Ilych Nature Reserve and its vicinity based on Landsat satellite data. We adopted a time series reconstruction technique for high spatial resolution imagery to compensate the lack of cloudless observations for the territory of interest. Based on the reconstructed images, we derived four seasonal multispectral (RED, NIR and SWIR bands) composites, which were used together with additional terrain information (DEM from ALOS and ASTER data) for object-based thematic classification. Preliminary segmentation of satellite images was performed using the Full Lambda Schedule algorithm, followed by Random Forest classification. The basic statistical metrics (mean, standard deviation, maximum, minimum, etc.), calculated within each segment for all bands of seasonal composites, spectral indices obtained on their basis, DEM and its derivatives, were used as variables for classification. We evaluated the importance of statistical metrics and mapping features during the classifier training process in order to identify the optimal set of variables, which was required for the best thematic classes’ discrimination. As a result, we obtained a map with overall classification accuracy of 90.8 % based on the 11 most significant variables (mean values for the bands of winter, spring and summer composites, as well as the DEM height and slope). The mapping accuracy was estimated with a set of control points placed in random stratified manner. The produced map is a base layer for further research related to the development of methods for dynamic mapping of forest fire regimes at the local spatial level.
Keywords: remote sensing, thematic mapping, time series reconstruction, land cover mapping, forest mapping, Pechora-Ilych Nature Reserve, Landsat, Full Lambda Schedule, Random Forest
Full textReferences:
- Aleynikov A. A., Tyurin A. V., Simakin L. V., Efimenko A. S., Laznikov A. A., Istoriya pozharov v temnokhvoynykh lesakh Pechoro-Ilychskogo zapovednika so vtoroy poloviny XIX veka po nastoyashcheye vremya (Fire History of Dark Needle Coniferous Forests in Pechora-Ilych Nature Reserve from the Second Half of XIX Century to Present Time), Sibirskiy lesnoy zhurnal, 2015, No. 6, pp. 31–42.
- Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p.
- Gavrilyuk E. A., Ershov D. V., Metodika sovmestnoi obrabotki raznosezonnykh izobrazhenii Landsat-TM i sozdaniya na ikh osnove karty nazemnykh ekosistem Moskovskoi oblasti (Processing technique for terrestrial ecosystems mapping of Moscow Region based on Landsat-TM multi-seasonal images), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 15–23.
- Elsakov V. V., Marushchak I. O., Sputnikovyye izobrazheniya v analize kolichestvennykh kharakteristik lesnykh fitotsenozov Pechoro-Ilychskogo zapovednika Respubliki Komi (The satellite monitoring of quantitative parameters of forest ecosystems of Pechora-Ilych Nature Reserve), Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 4, pp. 303–309.
- Ershov D. V., Gavrilyuk E. A., Karpukhina D. A., Kovganko K. A., Novaya karta rastitelnosti tsentralnoi chasti Evropeyskoi Rossii po sputnikovym dannym vysokoi detalnosti (A new map of the vegetation of central European Russia based on high-resolution satellite data), Doklady Akademii nauk, 2015, Vol. 464, No. 5, pp. 639–641.
- Ershov D. V., Burtseva V. S., Gavrilyuk E. A., Koroleva N. V., Aleynikov A. A., Diagnostika sovremennogo suktsessionnogo sostoyaniya lesnykh ekosistem Pechoro-Ilychskogo zapovednika po sputnikovym tematicheskim produktam (Recognizing the recent succession stage of forest ecosystems in Pechora-Ilych Nature Reserve with thematic satellite products), Lesovedeniye, 2017, No. 5, pp. 3–15.
- Kolbudaev P. A., Bartalev S. A., Plotnikov D. E., Matveev A. M., Tekhnologiya obrabotki sputnikovykh dannykh Landsat-TM/ETM+ (Technology for processing Landsat-TM/ETM+ satellite data), 14-ya Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (14th All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2016, p. 37.
- Kurbanov E. A., Vorob’ev O. N., Gubaev A. V., Lezhnin S. A., Polevshchikova Yu.A., Demisheva E. N., Chetyre desyatiletiya issledovanii lesov po snimkam Landsat (Four decades of forest research with the use of Landsat images), Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya “Les. Ekologiya. Prirodopol’zovanie”, 2014, No. 1 (21), pp. 18−32.
- Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskii A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
- Plotnikov D. E., Miklashevich T. S., Bartalev S. A., Vosstanovlenie vremennykh ryadov dannykh distantsionnykh izmerenii metodom polinomial’noi approksimatsii v skol’zyashchem okne peremennogo razmera (Using local polynomial approximation within moving window for remote sensing data time-series smoothing and data gaps recovery), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103–110.
- Plotnikov D. E., Kolbudaev P. A., Bartalev S. A., Loupian E. A., Avtomaticheskoye raspoznavaniye ispolzuyemykh pakhotnykh zemel na osnove sezonnykh vremennykh serii vosstanovlennykh izobrazhenii Landsat (Automated annual cropland mapping from reconstructed time series of Landsat data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 2. pp. 112–127.
- Breiman L., Random forests, Machine Learning, 2001, Vol. 45, No. 1, pp. 5–32.
- Chen J., Ban Y., Li S., China: Open access to Earth land-cover map, Nature, 2014, Vol. 514, pp. 434.
- Drobyshev I., Niklasson M., Angelstam P., Majewski P., Testing for anthropogenic influence on fire regime for a 600-year period in the Jaksha area, Komi Republic, East European Russia, Canadian J. Forest Research, 2004, Vol. 34, No. 10, pp. 2027–2036.
- Gao B. C., NDWI ― A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space, Remote Sensing of Environment, 1996, Vol. 58, No. 3, pp. 257–266.
- Gao F., Masek J., Schwaller M., Hall F., On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance, IEEE Transactions on Geoscience and Remote Sensing, 2006, Vol. 44, No. 8, pp. 2207–2218.
- Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., Thau D., Stehman S. V., Goetz S. J., Loveland T. R., Kommareddy A., Egorov A., Chini L., Justice C. O., Townshend J. R. G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850−853.
- Li C. C., Wang J., Hu L. Y., Yu L., Clinton N., Huang H. B., Yang J., Gong P., A circa 2010 thirty meter resolution forest map for China, Remote Sensing, 2014, Vol. 6, No. 6, pp. 5325–5343.
- Liaw A., Wiener M., Classification and Regression by randomForest, R News, 2002, Vol. 2, No. 3, pp. 18–22.
- Pasquarella V. J., Holden C. E., Woodcock C. E., Improved mapping of forest type using spectral-temporal Landsat features, Remote Sensing of Environment, 2018, Vol. 210, pp. 193–207.
- Redding N. J., Crisp D. J., Tang D., Newsam G. N., An efficient algorithm for Mumford-Shah segmentation and its application to SAR imagery, Proc. Conf. “Digital Image Computing: Techniques and Applications” (DICTA’99), Perth, Australia, 1999, pp. 35–41.
- Rouse J. R., Haas J. S., Deering D., Monitoring Vegetation Systems in the Great Plains with ERTS, Goddard Space Flight Center 3d ERTS-1 Symp., NASA, 1974, Vol. 1, Sect. A., pp. 309–317.
- Thompson S. D., Nelson T. A., White J. C., Wulder M. A., Large area mapping of tree species using composited Landsat imagery, Canadian J. Remote Sensing, 2015, Vol. 41, No. 3, pp. 203–218.
- Wu M., Zhang X., Huang W., Niu Z., Wang C., Li W., Hao P., Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring, Remote Sensing, 2015, Vol. 7, No. 12. pp. 16293–16314.
- Wu M., Wu C., Huang W., Niu Z., Wang C., Li W., Hao P., An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery, Information Fusion, 2016, No. 31, pp. 14–25.
- Zhu X., Liu D., Accurate mapping of forest types using dense seasonal Landsat time-series, ISPRS J. Photogrammetry and Remote Sensing, 2014, Vol. 96, pp. 1–11.