ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 110-119

Water content variations in the tundra land cover: evidence from multispectral satellite imagery (a case study of a liquefied natural gas plant construction site, Yamal Peninsula)

S.G. Kornienko 1 
1 Oil and Gas Research Institute RAS, Moscow, Russia
Accepted: 23.08.2018
DOI: 10.21046/2070-7401-2018-15-5-110-119
Developing methods for large-scale mapping of water content variatons in tundra vegetation and soil using remote sensing is of special importance for predicting geocryological hazard at sites of petroleum production and transportation in permafrost. The paper presents basic principles of multiparametric analysis applied to spaceborne data of different scales in order to detect and characterize anomalous changes in land cover water content. The study was performed at the construction site of a liquefied natural gas plant in the Yamal Peninsula using Landsat-8, Ikonos, and Planet Scope data of 2013 and 2017. The data were used to find empirical relationships that describe the behavior of normalized difference vegetaion and water indexes (NDVI and NDWI, respectively) and reflectance at red and near-infrared wavelengths as a function of land surface temperatures (LST). Zones of water content changes in the tundra land cover were outlined from changes in the LST and in the NDWI and temperature-vegetation (TVX) spectral indexes based on Landsat-8 data. The results prove that NDVI and red and near-infrared reflectance derived from high-resolution satellite imagery can be used as proxies of water content changes in the tundra land cover. The suggested multiparametric analysis of spaceborne data improves the quality of water content variation estimates due to reduction of random effects.
Keywords: water content, remote sensing, reflectance, land cover, spectral index, tundra
Full text

References:

  1. Baltabaev Sh. G., Serebryakov E. P., Lebedev M. S., Lebedeva E. T., Geotekhnicheskii monitoring Yamburgskogo neftegazokondensatnogo mestorozhdeniya v usloviyakh sploshnogo rasprostraneniya mnogoletnemerzlykh gruntov (Geotechnical monitoring of Yamburg oil and gas condensate field in conditions of continuous spreading of permafrost soils), Inzhenernye izyskaniya, 2015, No. 1, pp. 64–69.
  2. Kornienko S. G., Variatsii koeffitsientov otrazheniya v krasnoi, blizhnei infrakrasnoi oblasti spectra i indeksa NDVI obraztsov tundrovoi rastitel’nosti v zavisimosti ot vlazhnosti substratov (Variations of red and near-infrared reflectance and NDVI of tundra vegetation as a function of substrate moisture), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 225–234.
  3. Kornienko S. G., Izuchenie transformatsii tundrovogo napochvennogo pokrova na uchastkakh pirogennogo porazheniya po dannym sputnikov Landsat (Transformation of tundra land cover at the sites of pyrogenic disturbance: studies based on Landsat satellite data), Kriosfera Zemli, 2017, Vol. XXI, No. 1, pp. 93–104.
  4. Krinov E. L., Spektral’naya otrazhatel’naya sposobnost’ prirodnykh obrazovanii (The spectral reflectivity of natural formations), Moscow: Izd. AN SSSR, 1947, 271 p.
  5. Lovchuk V. V., Nikitina N. F., Kondratenko C. T., Kondrat’eva T. A. Otchet po inzhenerno-geologicheskoi sʺemke Uzhno-Tambeiskoi struktury m-ba 1:50 000 na ploshchadi 1005 km2 v 1981–1984 gg. v 2-kh tomakh. (Report on engineering-geological survey South-Tambeyskoe structure scale 1:50 000 on the area of 1005 km2 in 1981–1984. In 2 vol.), Vol. 1, Tyumen, 1984, 293 p.
  6. Pendin V. V., Ganova S. D. Geoekologicheskii monitoring territorii raspolozheniya ob”ektov transporta gaza v kriolitozone (Geoecological monitoring of territories of location of objects of transport of gas in the permafrost zone), Moscow: OAO PNIIIS, 2009, 236 p.
  7. Gao B., NDWI ― A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, 1996, Vol. 58, pp. 257–266.
  8. Laidler G. J., Treitz P. M., Atkinson D. M., Remote Sensing of Arctic Vegetation: Relations between the NDVI, Spatial Resolution and Vegetation Cover on Boothia Peninsula, Nunavut, Arctic, 2008, Vol. 61, No. 1, pp. 1–13.
  9. Lambin E. F., Ehrlich D., Combining vegetation indices and surface temperature for land-cover mapping at broad spatial scales, Intern. J. Remote Sensing, 1995, Vol. 16, No. 3, pp. 573–579.
  10. Quemada M., Daughtry C. S. T., Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions, Remote Sensing, 2016, Vol. 8(8), No. 660, 20 p.
  11. Van de Griend A. A., Owe M., On the relationship between thermal emissivity and the normalized different vegetation index for natural surfaces, Intern. J. Remote Sensing, 1993, Vol. 14, No. 6, pp. 1119–1131.
  12. Weng Q., Lu D., Schubring J., Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies, Remote Sensing of Environment, 2004, Vol. 89, pp. 467–483.