ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 241-250

Studying the causes of longitudinal irregularities of ionospheric disturbances in the Northern Hemisphere during magnetic storms

B.G. Shpynev 1 , D.S. Khabituev 1 , M.A. Chernigovskaya 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 23.08.2018
DOI: 10.21046/2070-7401-2018-15-5-241-250
The longitudinal structure of geomagnetic field variations is studied on the basis of two magnetometer chains in the Northern Hemisphere located near latitudes ~55°N and ~70°N during the time periods associated with the development of four magnetic storms in 2012–2014. It has been found that the geomagnetic field variability has irregular longitudinal structure due to difference of geographic and geomagnetic poles and also, perhaps, the existence of anomalies of different spatial scales in the background magnetic field of the Earth. The features of longitudinal variations of the geomagnetic field also depend on the individual characteristics of magnetic storm development. According to the mid-latitude magnetometer chain, the zone of strong variations of H- and Z-components of geomagnetic field is formed in the direction of the Northern geomagnetic pole meridian near ~270° (in geographical coordinates) both in conditions of low and disturbed geomagnetic activity. In the magneto-disturbed periods over Eurasia, two zones of strong variations of the Earth’s magnetic field are formed symmetrically with respect to the geomagnetic pole meridian at ~40° and ~130° longitudes. Between these two zones, there always a sector is formed with the lowest geomagnetic field variations at the longitudes of 80–110°. Along the high-latitude magnetometer chain, the maximum values of Z-component geomagnetic field variations are observed at ~130°, ~300° and ~200° longitudes. For variations of H-component the maximum values are located in the sector of longitudes ~130–200°. These features of the longitudinal structure and variations of the geomagnetic field lead to the fact that the development of geomagnetic storms in the ionosphere also has pronounced longitudinal inhomogeneities.
Keywords: geomagnetic field variations, geomagnetic storm, ionospheric disturbances
Full text

References:

  1. Guglielmi A. V., On the phenomenological theory of magnetic storms. Solar-Terrestrial Physics, 2016, Vol. 2, No. 2, pp. 37–45, DOI: 10.12737/20998.
  2. Zvereva T. I., Dinamika glavnogo magnitnogo polya Zemli s 1900 goda po nashi dni (Dynamics of the main magnetic field of the Earth from 1900 to our days), Elektromagnitnye i plazmennye protsessy ot nedr Solntsa do nedr Zemli, Yubileinyi sbornik IZMIRAN-75 (Electromagnetic and plasma processes from the Sun to the Earth), Moscow: IZMIRAN, 2015, pp. 36–45.
  3. Lyons L. R., Williams D. J., Quantitative Aspects of Magnetospheric Physics, D. Reidel Publishing Company, 1984, 246 p.
  4. Mizun Yu. G. Polyarnaya ionosfera (Polar ionosphere), Leningrad: Nauka, 1980, 216 p.
  5. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Chernigovskaya M. A., Ratovskii K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigor’eva S. A., Panchenko V. A., Koren’kova N. A., Melich I., Issledovanie ionosfernogo otklika na sil’nuyu geomagnitnuyu buryu v marte 2015 goda po dannym evraziiskoi tsepi ionozondov (Studying the ionosphere response to severe geomagnetic storm in March 2015 according to Eurasian ionosonde chain), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 235–248, DOI: 10.21046/2070-7401-2017-14-4-235-248.
  6. Achache J., Cohen Y., Counil J.-L., The magnetic anomalies of the Earth’s crust, Endeavour, 1988, Vol. 12, No. 4, pp. 154–162, DOI:10.1016/0160-9327(88)90160-3.
  7. Akasofu S. I., A historical review of the geomagnetic storm-producing plasma flows from the Sun, Space Science Reviews, 2011, Vol. 164, pp. 85, DOI: 10.1007/s11214-011-9856-y.
  8. Buonsanto M. J., Ionospheric storms ― a review, Space Science Reviews, 1999, Vol. 88, pp. 563–601.
  9. Danilov A. D., Laštovička J., Effects of geomagnetic storms on the ionosphere and atmosphere, Intern. J. Geomagnetism and Aeronomy, 2001, Vol. 2, No. 3, pp. 209–224.
  10. Gonzalez W. D., Joselyn J. A., Kamide Y., Kroehl H. W., Rostoker G., Tsurutani B. T., Vasyliunas V. M., What is a geomagnetic storm? J. Geophysical Research, 1994, Vol. 99, No. A4, pp. 5771–5792.
  11. Gubenko V. N., Pavelyev A. G., Kirillovich I. A., Liou Y.-A., Case study of inclined sporadic E layers in the Earth’s ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves, Advances in Space Research, 2018, Vol. 61, No. 7, pp. 1702–1716, DOI: 10.1016/j.asr.2017.10.001.
  12. Hemant K., Maus S., Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophysical Research, 2005, Vol. 110, B12103, DOI: 10.1029/2005JB003837.
  13. Hinze W. J., Continental magnetic anomalies, Rewiews of geophysics and space physics, 1979, Vol. 17, No. 2, pp. 257–273.
  14. Kim H. R., von Frese R. R. B., Golynsky A. V., Taylor P. T., Kim J. W., Application of satellite magnetic observations for estimating near-surface magnetic anomalies, Earth Planets and Space, 2004, Vol. 56, pp. 955, DOI:10.1186/BF03351793.
  15. MacDougall J. W., Jayachandran P. T., Plane J. M. C., Polar cap Sporadic-E: part 1, observations, J. Atmospheric and Solar-Terrestrial Physics, 2000, Vol. 62, pp. 1155–1167.
  16. Olsen N., Hulot G., Lesur V., Finlay C. C., Beggan C., Chulliat  A., Sabaka T. J., Floberghagen R., Friis-Christensen E., Haagmans R., Kotsiaros S., Lühr H., Tøffner-Clausen L., Vigneron P., The Swarm Initial Field Model for the 2014 geomagnetic field, Geophysical Research Letters, 2015, Vol. 42, pp. 1092–1098, DOI: 10.1002/2014GL062659.
  17. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain, J. Atmospheric and Solar-Terrestrial Physics, In press, DOI: 10.1016/j.jastp.2017.10.014.
  18. Thébault E., Vigneron P., Langlais B., Hulot G., A Swarm lithospheric magnetic field model to SH degree 80, Earth, Planets and Space, 2016, Vol. 68, pp. 126, DOI: 10.1186/s40623-016-0510-5.
  19. Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Chelpanov M., Ionospheric effects of St. Patrick’s storm over Asian Russia: 17–19 March 2015, J. Geophysical Research Space Physics, 2017, Vol. 122, pp. 2484–2504, DOI: 10.1002/2016JA023180.