ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 5, pp. 217-228

The sea surface and the katabatic flow interaction in the fjords of Spitsbergen

I.A. Repina 1, 2 
1 A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia
2 M.V. Lomonosov Moscow State University, Moscow, Russia
Accepted: 04.09.2018
DOI: 10.21046/2070-7401-2018-15-5-217-228
The generation of katabatic winds in the Polar Regions is associated with a strong cooling of air on the glacial plateau slopes and its movement under gravity down the slope. These winds have a significant influence both on the climate of these regions and on the energy balance in the coastal zone. In turn, the strength of winds depends on the landscape and the synoptic situation in the region. A study of the turbulent structure of the katabatic winds was carried out in the Kongsfjorden-Kongwegen valley (Svalbard) at the boundary of the glacier and the fjord in the spring, which permits to evaluate the structure of the wind flow above the fjord. The main goal of this work is determination of the boundary conditions for the mesoscale climate models in areas with heterogeneous surface, and obtaining information for the interpretation of satellite data. Profile measurements made it possible to find the relationship between the altitude of the wind maximum and the atmospheric surface layer stability. When the level of the wind maximum increases, the stability of the flow increases, which leads to a discrepancy between the values calculated by the Monin – Obukhov similarity theory and the measured values of the turbulent fluxes. Errors decrease with the use of the temperature roughness length and the replacement of the stability parameter by the gradient Richardson number.
Keywords: katabatic winds, inhomogeneous surface, atmosphere-surface energy exchange, stability of the atmosphere, universal functions of the similarity theory
Full text


  1. Mityagina M. I., Lavrova O. Yu., Bocharova T. Yu., Nablyudenie podvetrennykh voln i vikhrevykh struktur za prirodnymi prepyatstviyami v atmosfere pri pomoshchi radiolokatsionnogo zondirovaniya morskoi poverkhnosti (Observation of lee waves and vortical structures behind natural objects in the atmosphere using radar remote sensing data), Issledovanie Zemli iz kosmosa, 2004, No. 5, pp. 44–50.
  2. Monin A. S., Obukhov A. M., Osnovnye zakonomernosti turbulentnogo obmena v prizemnom sloe atmosfery (The main laws of turbulent exchange in the surface layer), Trudy Instituta Geofiziki AN SSSR, 1954, Vol. 24(151), pp. 163–187.
  3. Repina I. A., Ivanov B. V., Kuznetsov R. D., Rezhim vetra nad lednikovymi sklonami (po dannym izmerenii na arkhipelage Shpitsbergen), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2009, Vol. 6(2), pp. 180–187.
  4. Andreas E. L., A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice, Boundary-Layer Meteorology, 1987, Vol. 38(1), pp. 159–84.
  5. Andreas E. L. Parametrizing scalar transfer over snow and ice: a review, J. Hydrometeorology, 2002, Vol. 3, pp. 417–431.
  6. Argentini S., Viola A. P., Mastrantonio G., Maurizi A., Georgiadis T., Nardino M., Characteristics of the boundary layer at Ny-Alesund in the Arctic during the ARTIST field experiment, Annali di Geofisica, 2003, Vol. 46, No. 2, pp. 185–196.
  7. Beine H. J., Argentini S., Maurizi A., Mastrantonio G., Viola A., The local wind field a Ny-Alesund and Zeppelin mountain at Svalbard, Meteorology and Atmospheric Physics, 2001, Vol. 78, pp. 107–113.
  8. Beljaars A. C., Holtslag A. A., Flux parameterization over land surfaces for atmospheric models, J. Applied Meteorology, 1991, Vol. 30(3), pp. 327–341.
  9. Bromwich D. H., Carrasco J. F., Satellite observations of katabatic wind propagation for Great distances across the Ross ice shelf, Monthly Whether Review, 1992, Vol. 120, pp. 1940–1949.
  10. Cisek M., Makuch P., Petelski T., Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden, Oceanologia, 2017, Vol. 59(4), pp. 413–421.
  11. Esau I., Repina I., Wind climate in Kongsfjorden, Svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving simulations, Advances in Meteorology, 2012, Article ID 568454, 16 p.
  12. Forland E. J., Hansen-Bauer I., Nordli P., Climate statistics and long-term series of temperature and precipitation at Svalbard and Jan Mayen, Oslo, Den Norske Meteorologiske Institutt, 1997, DNMI-KLIMA report 21/97, 40 p.
  13. Geyer F., Ferand I., Smedsrud L. H., Structure and forcing of the overflow at the Storfjorden sill and its connection to the Arctic coastal polynya in Storfjorden, Ocean Science, 2010, Vol. 6, No. 1, pp. 401–411.
  14. Gorter W., Van Angelen J. H., Lenaerts J. T., Van den Broeke M. R., Present and future near-surface wind climate of Greenland from high resolution regional climate modelling, Climate dynamics, 2014, Vol. 42(5–6), pp. 1595–1611.
  15. Grachev A. A., Andreas E. L., Fairall C. W., Guest P. S., Persson P. O. G., SHEBA flux-profile relationships in the stable atmospheric boundary layer, Boundary-Layer Meteorology, 2007, Vol. 124, pp. 315–333.
  16. Hanssen-Bauer I., Solas M. K., Stefensen E. L., The climate of Spitsbergen, Oslo, Den Norske Meteorologiske Institutt, 1990, DMNI 39/90 KLIMA report, 58 p.
  17. Ivanov V. V., Polyakov I. V., Dmitrenko I. A., Hansen E., Repina I. A., Kirillov S. A., Mauritzen C., Simmons H., Timokhov L. A., Seasonal variability in Atlantic water off Spitsbergen, Deep Sea Research Part I: Oceanographic Research Papers, 2009, Vol. 56(1), pp. 1–14.
  18. Kilpelainen T., Vihma T., Olafsson H., Modelling of spatial variability and topographic effects over arctic fjords in Svalbard, Tellus A, 2011, Vol. 63, No. 2, pp. 223–237.
  19. Li X., Zheng W., Pichel W. G., Zou C. Z., Clemente‐Colón P., Coastal katabatic winds imaged by SAR, Geophysical Research Letters, 2007, Vol. 34(3), L03804.
  20. Livik G., An Observational and Numerical Study of Local Winds in Kongsfjorden, Spitsbergen, M. S. thesis, Geophysical Institute, University of Bergen, 2011.
  21. Lüers J., Bareiss J., Direct near-surface measurements of sensible heat fluxes in the Arctic tundra applying eddy covariance and laser scintillometry — the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006), Theoretical and Applied Climatology, 2011, Vol. 105(3–4), pp. 387–402.
  22. Noufal K. K., Najeem S., Latha G., Venkatesan R., Seasonal and long term evolution of oceanographic conditions based on year-around observation in Kongsfjorden, Arctic Ocean, Polar Science, 2017, Vol. 11, pp. 1–10.
  23. Oltmanns M., Straneo F., Moore G. W., Mernild S. H., Strong downslope wind events in Ammassalik, southeast Greenland, J. Climate, 2014, Vol. 27(3), pp. 977–993.
  24. Roberts T. J., Dütsch M., Hole L. R., Voss P. B., Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to a mesoscale model, Atmospheric Chemistry and Physics Discussions, 2015, Vol. 15, Issue 19, pp. 27539–27573.
  25. Rutgersson A., Smedman A. S., Högström U., Use of conventional stability parameters during swell, J. Geophysical Research: Oceans, 2001, Vol. 106(C11), pp. 27117–27134.
  26. Sandvik A. D., Furevik B. R., Case study of a coastal jet at Spitsbergen ― comparison of SAR- and model-estimated wind, Monthly Weather Review, 2002, Vol. 130, No. 4, pp. 1040–1051.
  27. Skeie P., Grønas S., Strongly stratified easterly flows across Spitsbergen, Tellus A, 2000, Vol. 52, No. 5, pp. 473–486.
  28. Sundfjord A., Albretsen J., Kasajima Y., Skogseth R., Kohler J., Nuth C., Skarðhamar J., Cottier F., Nilsen F., Asplin L., Gerland S., Effects of glacier runoff and wind on surface layer dynamics and Atlantic Water exchange in Kongsfjorden, Svalbard; a model study, Estuarine, Coastal and Shelf Science, 2017, Vol. 187, pp. 260–272.
  29. Svendsen H., Beszczynska-Møller A., Hagen J. O., The physical environment of Kongsfjorden-Krossfjorden, and Arctic fjord system in Svalbard, Polar Research, 2002, Vol. 21, No. 1. pp. 133–166.
  30. Teigen S. H., Nilsen F., Skogseth R., Gjevik B., Beszczynska‐Möller A., Baroclinic instability in the West Spitsbergen Current, J. Geophysical Research: Oceans, 2011, Vol. 116(C7), C07012.
  31. Van den Broeke M. R., Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer, J. Applied Meteorology, 1997, Vol. 36(6), pp. 763–774.
  32. Vihma T., Kilpeläinen T., Manninen M., Sjöblom A., Jakobson E., Palo T., Jaagus J., Maturilli M., Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring, Advances in Meteorology, 2011, 486807, 14 p.