ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 214-221

Formation and propagation of an eddy dipole at Cape Taran in the southeast Baltic Sea

E.V. Krayushkin 1 , O.Yu. Lavrova 1 , K.R. Nazirova 1 , Ya. O. Alferyeva 2 , D.M. Soloviev 3 
1 Space Research Institute RAS, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia
3 Marine Hydrophysical Institute RAS, Sevastopol, Russia
Accepted: 17.08.2018
DOI: 10.21046/2070-7401-2018-15-4-214-221
The results of satellite observation of the formation and propagation of an eddy dipole at Cape Taran (southeast Baltic Sea) on 7–9 August 2018 are presented. The formation of the dipole was induced by a sharp change in wind conditions. High water turbidity in the coastal zone enabled distinct manifestation of the dipole in visible satellite images and especially in total suspended matter maps derived from satellite data. The dynamics of the dipole was retrieved from analysis of Sentinel-3 OLCI, Sentinel-2 MSI and Terra/Aqua MODIS satellite images. Concurrently with satellite remote sensing, an oceanographic field study was conducted in the same region, featuring ADCP surveys along standard transects near Cape Taran and launch of Lagrangian drifters to determine the structure of local currents. The edge of highly turbid waters was determined using an CTD probe equipped with a turbidity meter. Joint analysis of the satellite data and in situ observations made it possible to evaluate spatial and dynamic parameters of different parts of the dipole. Over the three days, the eddy dipole underwent a strong transformation and traveled from Cape Taran to the middle of the Curonian Spit, a distance of about 63 km.
Keywords: eddy dipole, current around cape, total suspended matter, satellite observation, Sentinel-3 OLCI, Sentinel-2 MSI, Terra/Aqua MODIS, Lagrangian drifter, southeast Baltic Sea
Full text

References:

  1. Ginzburg A. I., Bulycheva E. V., Kostianoy A. G. Solovyov D. M., Vortex dynamics in the southeastern Baltic Sea from satellite radar data, Oceanology, 2015, Vol. 55, No. 6, pp. 805–813.
  2. Golenko M. N., Krayushkin E. V., Lavrova O. Yu., Issledovanie osobennostei pribrezhnykh poverkhnostnykh techenii v Yugo-Vostochnoi Baltike po rezul’tatam podsputnikovykh drifternykh eksperimentov i chislennogo modelirovaniya (Investigation of coastal surface currents in the South-East Baltic based on concurrent drifter and satellite observations and numerical modeling), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 7, pp. 280–296.
  3. Gurova E. S., O formirovanii i dinamike vikhrya u poberezh’ya Yugo-Vostochnoi Baltiki po dannym distantsionnogo zondirovaniya (On the formation and dynamics of an eddy at the coast of southeast Baltic based on remote sensing data), Vestnik IKBFU, 2012, Issue 1, pp. 16–21.
  4. Karimova S. S., Lavrova O. Yu., Solov’ev D. M., Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 9, pp. 1006–1013.
  5. Lavrova O. Yu., Mityagina M. I., Kostianoy A. G., Sputnikovye metody vyyavleniya i monitoringa zon ekologicheskogo riska morskikh akvatorii (Satellite methods for detecting and monitoring marine zones of ecological risk), Moscow: IKI RAN, 2016, 335 p.
  6. Loupian E. A., Matveev A. A., Uvarov I. A., Bocharova T. Yu., Lavrova O. Yu., Mityagina M. I., Sputnikovyi servis See the Sea ― instrument dlya izucheniya protsessov i yavlenii na poverkhnosti okeana (Satellite service See the Sea ― a tool for investigation of processes and phenomena at the sea surface), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 2, pp. 251–261.
  7. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskiy A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  8. Gurova E., Chubarenko B., Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic, Oceanologia, 2012, Vol. 54 (4), pp. 631–654.
  9. Lavrova O., Krayushkin E., Golenko M., Golenko N., Effect of Wind and Hydrographic Conditions on the Transport of Vistula Lagoon Waters Into the Baltic Sea: Results of a Combined Experiment, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2016, Vol. 9, Issue 9, pp. 5193–5201.
  10. Zhurbas V., Oh I. S., Park T., Formation and decay of a longshore baroclinic jet associated with transient coastal upwelling and downwelling: A numerical study with applications to the Baltic Sea, J. Geophysical Research, 2006, Vol. 111, C04014, DOI: 10.1029/2005JC003079.