ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 166-178

Development of capabilities for remote sensing estimate of Leaf Area Index from MODIS data

N.V. Shabanov 1 , S.А. Bartalev 1 , F.V. Eroshenko 2 , D.E. Plotnikov 1 
1 Space Research Institute RAS, Moscow, Russia
2 North-Caucasian Federal Scientific Agricultural Center, Mikhajlovsk, Stavropolsky Krai, Russia
Accepted: 30.07.2018
DOI: 10.21046/2070-7401-2018-15-4-166-178
Retrieval of land biophysical parameters from remote sensing observations is of interest for a wide range of scientific and application projects. Along with the empirical and statistical methods, methods based on physical models are widely utilized in the retrievals. This paper presents an approach for estimation of Leaf Area index (LAI) from MODerate resolution Imaging Spectroradiometer (MODIS) data. Daily LAI retrievals are performed using MODIS measurements of the Bi-directional reflectance Factor (BRF) in Red and NIR bands at 250 m spatial resolution and radiative transfer modeling in a vegetation canopy. The obtained LAI estimates are further processed to derive cloud-free composites followed by the time series reconstruction. This paper presents the physical principles of LAI product retrievals and the results of the product analysis, including evaluation with the ground measurements. The time series of weekly LAI product over Russia since March 2000 are available in the Vega-Science, a system of vegetation cover monitoring.
Keywords: Leaf Area Index, remote sensing, radiative transfer modeling, MODIS
Full text

References:

  1. Bartalev S. A., Lupian E. A., Issledovaniya i razrabotki IKI RAN po razvitiyu metodov sputnikovogo monitoringa rastitel’nogo pokrova (R&D on methods for satellite monitoring of vegetation by the Russian Academy of Sciences’ Space Research Institute), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 197–214.
  2. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Sostoyanie i perspektivy razvitiya metodov sputnikovogo kartografirovaniya rastitel’nogo pokrova Rossii (State and perspectives of the development of methods for satellite mapping of vegetation cover in Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 203–221.
  3. Bartalev S. A., Stytsenko F. V., Egorov V. A., Loupian E. A., Sputnikovaya otsenka gibeli lesov Rossii ot pozharov (Remote sensing estimate of Russian forest mortality due to fires), Lesovedenie, 2015, Vol. 2, pp. 83–94.
  4. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2016, 208 p.
  5. Eroshenko F. V., Ploshchad’ assimilyatsionnoi poverkhnosti i NDVI posevov ozimoi pshenitsy (Leaf Area Index and NDVI of winter wheat sowings), F. V. Eroshenko, I. G. Storchak, E. O. Schestakova (eds.), Zemledelie, 2015, Vol. 7, pp. 37–39.
  6. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov A. V., Kashnitskii V. Yu., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of systems for satellite data archiving, processing and analysis for tasks of environmental analysis and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 263–284.
  7. Plotnikov D. E., Micklashevitsch T. S., Bartalev S. A., Vosstanovlenie vremennykh ryadov dannykh distantsionnykh izmerenii metodom polinomial’noi approksimatsii v skol’zyashchem okne peremennogo razmera (Reconstruction of the time series of remote sensing data with the polinomial approximation within a sliding window of variable size), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 103–110.
  8. Tolpin V. A., Loupian E. A., Bartalev S. A., Plotnikov D. E., Matveev A. M., Vozmozhnosti analiza sostoyaniya sel’skokhozyaistvennoi rastitel’nosti s ispol’zovaniem sputnikovogo servisa “VEGA” (Capabilities satellite service “Vega” for analysis of condition of agricultural crops), Optika atmosfery i okeana, 2014, Vol. 27, No. 7(306), pp. 581–586.
  9. Asner G. P., Scurlock J. M. O., Hicke J. A., Global synthesis of leaf area index observations: implications for ecological and remote sensing studies, Global Ecology & Biogeography, 2003, Vol. 12, pp. 191–205.
  10. Baret F., Jacquemoud S., Hanocq J., The soil line concept in remote sensing, Remote Sensing Reviews, 1993, Vol. 7, No. 1, pp. 65–82.
  11. Boogaard H. L., van Diepen C. A., Roetter R. P., Cabrera J. M. C. A., van Laar H. H., User’s guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5, Technical document 52, Wageningen, Netherlands: Winand Staring Centre, 1998, 144 p.
  12. Cohen B. W., Maiersperger T. K., Yang Z., Gower S. T., Turner D. P., Ritts W. D., Berterretche M., Running S. W., Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: A quality assessment of 2000/2001 provisional MODIS products, Remote Sensing of Environment, 2003, Vol. 88, pp. 233–255.
  13. Dickinson R. E., Henderson-Sellers A., Kennedy P. J., Wilson M. F., Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR CCM, NCAR Tech. Note NCAR/TN-275-STR, Colorado: Boulder, 1986, 69 p.
  14. Friedl M. A., McIver D. K., Hodges J. C. F., Zhang X. Y., Muchoney D., Strahler A. H., Woodcock C. E., Gopal S., Schneider A., Cooper A., Global land cover mapping from MODIS: algorithms and early results, Remote Sensing of Environment, 2002, Vol. 183, pp. 287–302.
  15. Garrigues S., Lacaze R., Baret F., Morisette J. T., Weiss M., Nickeson J., Fernandes R., Plummer S., Shabanov N. V., Myneni R., Yang W., Validation and intercomparison of global Leaf Area Index products derived from remote sensing data, J. Geophysical Research, 2007, Vol. 113, G02028, DOI: 10.1029/2007JG000635.
  16. Huang D., Knyazikhin Y., Wang W., Privette J., Deering D. W., Stenberg P., Shabanov N. V., Tan B., Myneni R. B., Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements, Remote Sensing of Environment, 2008, Vol. 112, No. 1, pp. 35–50.
  17. Huete A., A soil-adjusted vegetation index (SAVI), Remote Sensing of Environment, 1988, Vol. 25, No. 3, pp. 295–309.
  18. Huete A. R., Didan K., Miura T., Rodriguez E. P., Gao X., Ferreira L. G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sensing of Environment, 2002, Vol. 83, pp. 195−213.
  19. Knyazikhin Y., Martonchik J. V., Myneni R. B., Diner D. J., Runing S., Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data, J. Geophysical Research, 1998, Vol. 103, pp. 32257–32275.
  20. Myneni R., Ramakrishna R., Nemani R., Running S., Estimation of Global Leaf Area Index and Absorbed PAR using radiative transfer models, IEEE Transactions on Geoscience and Remote Sensing, 1997, Vol. 35, No. 6, pp. 1380–1393.
  21. Potter C. S., Randerson J. T., Field C. B., Matson P. A., Vitousek P. M., Mooney H. A., Klooster S. A., Terrestrial ecosystem production: A process model based on global satellite and surface data, Global Biogeochemical Cycles, 1993, Vol. 7, No. 4, pp. 811–841.
  22. Running S. W., Coughlan J. C., A general model of forest ecosystem processes for regional applications, Ecological Modeling, 1998, Vol. 42, pp. 124–154.
  23. Sellers P., Tucker C., Collatz C., Los O., Justice C., Dazlich D., Randall D., A global 1° by 1° NDVI data set for climate studies. Part 2: The generation of global fields of terrestrial biophysical parameters from the NDVI, Intern. J. Remote Sensing, 1994, Vol. 15, Issue 17, pp. 3519–3545.
  24. Shabanov N. V., Knyazikhin Y., Baret F., Myneni R. B., Stochastic modeling of radiation regime in discontinuous vegetation canopies, Remote Sensing of Environment, 2000, Vol. 74, No. 1, pp. 125–144.
  25. Shabanov N. V., Huang D., Yang W., Tan B., Knyazikhin Y., Myneni R. B., Ahl D. E., Gower S. T., Huete A., Aragao L. E., Shimabukuro Y. E., Analysis and optimization of the MODIS LAI and FPAR algorithm performance over broadleaf forests, IEEE Transactions on Geoscience and Remote Sensing, 2005, Vol. 43, No. 8, pp. 1855–1865.
  26. Shabanov N. V., Gastellu-Etchegorry J.-P., The stochastic Beer-Lambert-Bouguer law for discontinuous vegetation canopies, J. Quantitative Spectroscopy and Radiative Transfer, 2018, Vol. 214, pp. 18–32.
  27. Yang W., Shabanov N., Huang D., Wang W., Dickinson R., Nemani R., Knyazikhin Y., Myneni R., Analysis of Leaf Area Index Products from Combination of MODIS Terra and Aqua Data, Remote Sensing of Environment, 2006, Vol. 104, Issue 3, pp. 297–312.
  28. Vermote E., El Saleous N., Justice C. O., Atmospheric correction of MODIS data in the visible to middle infrared: First results, Remote Sensing of Environment, 2002, Vol. 83, pp. 97–111.
  29. Zheng G., Moskal M., Retrieving Leaf Area Index (LAI) using remote sensing: theories, methods, and sensors, Sensors, 2009, Vol. 9, pp. 2719–2745.