ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 78-100

Microwave sensing of the ocean, atmosphere and land surface from Meteor-M No. 2 data

G.M. Chernyavsky 1 , L.M. Mitnik 2 , V.P. Kuleshov 2 , M.L. Mitnik 2 , I.V. Cherny 1 
1 STC Kosmonit of Russian Space Systems JSC, Moscow, Russia
2 V. I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
Accepted: 08.07.2018
DOI: 10.21046/2070-7401-2018-15-4-78-100
The design features of MTVZA-GY microwave radiometer on board Meteor-M No. 2 meteorological satellite are considered, information on operation of the instrument in space is presented and the results of measurements over various physical and geographical regions of the Earth are described. The satellite was launched on 8 July 2014 to a solar-synchronous circular orbit with a height of 830 km. The 29 channels of the radiometer measure the rising radiation of the Earth at frequencies ν in the range from 10 to 190 GHz when scanning along a cone at an angle of 65° to the local normal. Internal calibration of MTVZA-GY channels is carried out on each scan and provides correction of gain variations and data representation in the antenna temperature scale TV,Ha(ν) on vertical (V) and horizontal (H) polarizations. The transformation of TV,Ha(ν) into brightness temperatures TV,Hb(ν) was carried out from the calculated values of TV,Hb(ν) over homogeneous «hot» (Amazon forests) and «cold» (the ocean off the coast of Antarctica with weak wind and no clouds ) areas (external calibration). Comparison of the time series TV,Hb(ν) of MTVZA-GY and AMSR2 (on the Japan satellite GCOM-W1) over the test areas with a diameter of 200 km in the Amazon forests, Antarctica and Greenland demonstrates long-term stability of MTVZA-GYA operation. The global TV,Hb(ν) fields give an idea of the temperature of the ocean surface and the wind speed, the distribution of sea ice, the temperature of terrestrial and vegetative covers, Antarctica and Greenland, and the characteristics of cyclones over the ocean. In connection with the planned launches of Meteor-M No. 2-2 (December 2018) and Meteor-M No. 2-3 (2020) satellites with MTVZA-GY, the need to simulate brightness temperature, develop algorithms for parameter retrieving, calibration of radiometers and product validation is emphasized. The measurement data and products should be available to users in Russia and worldwide.
Keywords: remote sensing, microwave radiometry, calibration, validation, modeling, algorithms, MTVZA-GY, Meteor-M No. 2, AMSR2, brightness temperature, time series, long-term stability
Full text

References:

  1. Asmus V. V., Zagrebaev L. A., Makridenko O. E., Milekhin O. E., Solov’ev V. I., Uspenskii A. B., Frolov A. V., Khailov M. N., Sistema polyarno-orbital’nykh meteorologicheskikh sputnikov serii “Meteor-M” (System of polar-orbital meteorological satellites Meteor-M series), Meteorologiya i gidrologiya, 2014, No. 12, pp. 5–16.
  2. Barsukov I. A., Nikitin O. V., Strel’tsov A. M., Cherny I. V., Chernyavskii G. M., Predvaritel’naya obrabotka dannykh SVCh-radiometra MTVZA-GYa KA “Meteor-M” N 1 (Preliminary data processing of MTVZA GY radiometer from Meteor-M No. 1 Space Apparatus), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 2, pp. 257–264.
  3. Basharinov A. E., Gurvich A. S., Egorov S. T., Radioizluchenie Zemli kak planety (Radioemission of the Earth as a planet), Moscow, Nauka, 1974, 187 p.
  4. Boldyrev V. V., Il’gasov P. A., Pantsov V. Yu., Prokhorov Yu. N., Strel’nikov N. I., Cherny I. V., Chernyavskii G. M., Yakovlev V. V., Sputnikovyi mikrovolnovyi skaner/zondirovshchik MTVZA-GYa (Satellite microwave scanner/sounder MTVZA-GY), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Vol. 5, No. 1, pp. 243–248.
  5. Veselov V. M., Militskii Yu. A., Mirovskii V. G., Sharkov E. A., Etkin V. S., Eksperimental’naya metodika opredeleniya parametrov antenn radioteplovykh bortovykh kompleksov (Experimental technique for antenna parameter determination onboard radiothermal complexes), Issledovanie Zemli iz kosmosa, 1981, No. 2, pp. 63–75.
  6. Ermakov D. M., Sharkov E. A., Chernushich A. P., Sputnikovoe radioteplovidenie na sinopticheskikh i klimaticheski znachimykh masshtabakh (Satellite radio thermal imaging on synoptic- and climatically significant scales), Issledovanie Zemli iz kosmosa, 2016, No. 5, pp. 3–9.
  7. Kardashev N. S., Strukov I. A., Sputnikovyi radioastronomicheskii eksperiment “Relikt” (Satellite radio-astronomical experiment “Relict”), Nauka i Chelovechestvo, Moscow, Znanie, 1987, pp. 173–185.
  8. Mitnik M. L., Mitnik L. M., Vosstanovlenie parosoderzhaniya atmosfery i vodozapasa oblakov nad okeanom po dannym mikrovolnovogo zondirovaniya so sputnikov DMSP, TRMM, AQUA i ADEOS-II (Retrieval of total water vapor content and total cloud liquid water content from microwave sensing data from DMSP, TRMM, AQUA and ADEOS-II satellites), Issledovanie Zemli iz kosmosa, 2006, No. 4, pp. 34–41.
  9. Mitnik L. M., Mitnik M. L., Kalibrovka i validatsiya ― neobkhodimye sostavlyayushchie mikrovolnovykh radiometricheskikh izmerenii so sputnikov serii “Meteor-M” N 2 (Calibratrion and validation are required components of microwave radiometric measurements from Meteor-M series satellites), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 1, pp. 95–104.
  10. Mitnik L. M., Mitnik M. L., Gurvich I. A. Vykochko A. V., Kuzlyakina Yu. A., Cherny I. V., Chernyavskii G. M., Issledovanie evolyutsii tropicheskikh tsiklonov v severo-zapadnoi chasti Tikhogo okeana po dannym SVCh-radiometrov MTVZA-GYa so sputnika “Meteor-M” N 1 i AMSR-E so sputnika Aqua (Investigation of tropical cyclone evolution in the Northwestern Pacific Ocean using data of microwave radiometers Meteor-M No. 1 MTVZA-GY and Aqua AMSR-E), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 4, pp. 121–128.
  11. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Strel’tsov A. M., Chernyavskii G. M., Cherny I. V., SVCh skaner-zondirovshchik MTVZA-GYa na novom rossiiskom meteorologicheskom sputnike “Meteor-M” N 2: modelirovanie i analiz izmerenii v razlichnykh fiziko-geograficheskikh usloviyakh (Microwave scaner-sounder MTVZA-GY on new Russian meteorological satellite Meteor-M No. 2: Modeling and measurement analysis at various physical-geographical conditions), XIII Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (XIII All-Russia Open Conf. “Current Problems of Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2015, p. 166.
  12. Mitnik L. M., Mitnik M. L., Chernyavskii G. M., Cherny I. V., Vykochko A. V., Pichugin M. K., Privodnyi veter i morskoi led v Barentsevom more po dannym mikrovolnovykh izmerenii so sputnikov Meteor-M N 1 i GCOM-W1 v yanvare-marte 2013 g. (Surface wind and sea ice in the Barents Sea from microwave measurements obtained by Meteor-M No. 1 and GCOM-W1 satellites in January-March 2013), Issledovanie Zemli iz kosmosa, 2015, No. 6, pp. 1–11.
  13. Nakonechnyi V. P., Pantsov V. Yu., Prokhorov Yu. N., Strel’nikov N. I., Cherny I. V., Chernyavskii G. M., Danilov S. G., Kazantsev O. Yu., Optiko-mikrovolnovyi skaner/zondirovshchik MTVZA-OK (Optic-microwave scanner/sounder MTVZA-OK), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2004, Vol. 1, No. 1, pp. 197–203.
  14. Oblaka i oblachnaya atmosfera. Spravochnik (Clouds and cloudy atmosphere. Directory), I. P. Mazina, A. Kh. Khrgiana (eds.), Leningrad: Gidrometeoizdat, 1989, 648 p.
  15. Uspensky A. B., Asmus V. V., Kozlov A. A., Kramchaninova E. K., Streltsov A. M., Chernyavskii G. M., Cherny I. V., Absolyutnaya kalibrovka kanalov atmosfernogo zondirovaniya sputnikovogo mikrovolnovogo radiometra MTVZA-GYa (Absolute calibration of atmospheric sounding channels of MTVZA-GY microwave radiometer), Issledovanie Zemli iz kosmosa, 2016, No. 5, pp. 57–70.
  16. Uspensky A. B., Kramchaninova E. K., Koscov V. S., Uspensky S. A., Cherny I. V., Razvitie sistemy vneshnei kalibrovki i validatsii dannykh izmerenii mikrovolnovogo radiometra MTVZA-GYa KA “Meteor-M” No. 2 (Development of the calibration/validation system for microwave radiometer MTVZA GYa observations from Meteor-M No. 2 satellite), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 27–35.
  17. Tseitlin N. M., Antennaya tekhnika i radioastronomiya (Antenna Technology and Radioastronomy), Moscow: Soviet Radio, 1976, 352 p.
  18. Cherny I. V., Chernyavskii G. M., Uspensky A. B., Pegasov V. M., SVCh-radiometr MTVZA sputnika “Meteor-3M” N 1: predvaritel’nye rezul’taty letnykh ispytanii (Microwave radiometer MTVZA-GY on board Meteor-3M satellite: preliminary results of flight tests), Issledovanie Zemli iz kosmosa, 2003, No. 6, pp. 1–15.
  19. Chernyavskii G. M., Otechestvennye tekhnologii sputnikovoi SVCh-radiometrii (Domestic technology of satellite microwave radiometry) Aerokosmicheskii kur’er, 2007, No. 6, pp. 22–24.
  20. Chernyavskii G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Cherny I. V., Mikrovolnovoe zondirovanie okeana, atmosfery i zemnykh pokrovov po dannym sputnika “Meteor-M” N 2 (Microwave Sensing of the Ocean, Atmosphere and Land Surface from Meteor-M No. 2 Satellite Data), XV Vserossiiskaya otkrytaya konferentsiya “Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa” (XV All-Russia Open Conf. “Current Problems in Remote Sensing of the Earth from Space”), Book of Abstracts, Moscow, 2017, p. 8.
  21. Barsukov I., Cherniavsky G., Cherny I., Mitnik L., Kuleshov V., Mitnik M., New Russian meteorological satellite Meteor-M N 2: Sensing of the subsurface, surface and atmospheric characteristics by MTVZA GY microwave imager/sounder, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2016, pp. 5528–5531.
  22. Bentamy A., Grodsky S. A., Elyouncha A., Chapron B., Desbiolles F., Homogenization of scatterometer wind retrievals, Intern. J. Climatology, 2017, Vol. 37, Issue 2, pp. 870–889.
  23. Biswas S. K., Farrar S, Gopalan K., Santos-Garcia A., Linwood Jones W., Bilanow S., Intercalibration of microwave radiometer brightness temperatures for the Global Precipitation Measurement Mission, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 51, No. 3, pp. 1465–1477.
  24. Brown S., Ruf C., Determination of a hot black body reference target over the Amazon rainforest for the on-orbit calibration of microwave radiometers, J. Oceanic Atmospheric Technology, 2005, Vol. 22, No. 9, pp. 1340–1352.
  25. Brucker L., Picard G., Arnaud L., Barnola J.-M., Schneebeli M., Brunjail H., Lefebvre E., Fily M., Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements, J. Glaciology, 2011, Vol. 57, No. 201, pp. 171–182.
  26. Cherny I. V., Raizer V. Yu., Passive Microwave Remote Sensing of Oceans, Wiley-Praxis, Chichester, New York: Wiley, 1998, 195 p.
  27. Cherny I. V., Mitnik L. M., Mitnik M. L., Uspensky A. B., Streltsov A. M., On-orbit calibration of the “Meteor-M” Microwave Imager/Sounder, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2010, pp. 558–561.
  28. Cherny I. V., Chernyavsky G. M., Mitnik L. M., Kuleshov V. P., Mitnik M. L., Advanced Microwave Imager/Sounder MTVZA-GY-MP for New Russian Meteorological Satellite, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2017, pp. 1220–1223.
  29. ComisoJ. C., Polar Oceans from Space, New York: Springer Publishing, 2010, 507 p.
  30. Das N. N., Colliander A., Chan S. K., Intercomparisons of brightness temperature observations over land from AMSR-E and WindSat, IEEE Trans. Geoscience Remote Sensing, 2014, Vol. 52, No. 2, pp. 452–464.
  31. Donlon C. J., Martin M., Stark J., Roberts-Jones J., Fiedler E., Wimmer W., The Operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sensing of Environment, 2012, Vol. 116, pp. 140–158.
  32. Du J., Kimball J. S., Shi J., Jones L. A., Wu S., Sun R., Hu Y., Inter-calibration of satellite passive microwave land observations from AMSR-E and AMSR2 using overlapping FY3B-MWRI sensor measurements, Remote Sensing, 2014, Vol. 6, pp. 8594–8616.
  33. Ebuchi N., Evaluation of marine surface wind speed observed by AMSR2 on GCOM-W, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 9, pp. 3955–3962.
  34. Falcone V. J., Griffin M. K., Isaacs R. G., Pickle J. D., Morrissey J. F., Bussey A., Kakar R., Wang J., Racette P., SSM/T-2 Calibration data analyses, Proc. IEEE Topical Symp. Combined Optical, Microwave, Earth and Atmosphere Sensing, 1993, pp. 165–168.
  35. Gentemann C. L., Hilburn K. A., In situ validation of sea surface temperatures from the GCOM-W1 AMSR2 RSS calibrated brightness temperatures, J. Geophys. Research. Oceans, 2015, Vol. 120, pp. 3567–3585.
  36. Gentemann C. L., Wentz F. J., Brewer M., Hilburn K. A., Smith D. K., Passive microwave remote sensing of the ocean: an overview, In: Oceanography from Space, revisited, V. Barale, J. Gower, L. Alberotanza (eds.), Heidelberg: Springer, 2010, pp. 19–44.
  37. Gorobets N. N., Dakhov V. M., Cherny I. V., Millimeter-range multi-channel two polarization horn antenna, Proc. Third Intern. Symp. Physics and Engineering of Millimeter and Sub-Millimeter Waves, Kharkov, 1998, pp. 618–619.
  38. Hollinger J. P., Pierce J. L. Poe G. A., SSM/I instrument and evaluation, IEEE Trans. Geoscience and Remote Sensing, 1990, Vol. 28, No. 5, pp. 781–790.
  39. Imaoka K., Kachi M., Rasahara M., Ito N., Nakagawa K., Oki T., Instrument performance and calibration of AMSR-E and AMSR2, Intern. Arch. Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto, Japan, 2010, Vol. XXXVIII, Part 8.
  40. Jackson P. T. J., Hsu A. Y., Armand N., Kutuza B., Shutko A., Tishchenko Y., Petrenko B., Evtushenko A., Smirnov M., Savorskij V., Sorokin I., Nikolaev A., Sidorenko A., Priroda passive microwave observations in the Southern Great Plains 1997 hydrology experiment, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 1998, pp. 1568–1570.
  41. Knapp K. R., Ansari S., Bain C. L., Bourassa M. A., Dickinson M. J., Funk C., Globally gridded satellite observations for climate studies, Bull. American Meteorol. Soc., 2011, Vol. 92, No. 7, pp. 893–907.
  42. Kroodsma R. A., McKague D. S., Ruf C. S., Extension of vicarious cold calibration to 85–92 GHz for spaceborne microwave radiometers, IEEE Trans. Geoscience Remote Sensing, 2013, Vol. 52, No. 9, pp. 4743–4751.
  43. Kunkee D. B., Hong Y., Thompson D. A., Werner M. F., Poe G. A., Analysis of the Special Sensor Microwave Imager Sounder (SSMIS) fields-of-view on DMSP F-16, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 4, pp. 934–945.
  44. Kunkee D. B., Poe G. A., Boucher D. J., Swadley S. D., Hong Y., Wessel J. E., Uliana E. A., Design and evaluation of the First Special Sensor Microwave Imager/Sounder, IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46, No. 4, pp. 863–883.
  45. Liu Q., Weng F., English S. J., An improved fast microwave water emissivity model, IEEE Trans. Geoscience and Remote Sensing, 2011, Vol. 49, pp. 1238–1250.
  46. Macelloni G., Brogioni M., Pampaloni P., Cagnati A., Multifrequency microwave emission the Dome C area on the East Antarctic Plateau: Temporal and spatial variability, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 45, No. 7, pp. 2029–2039.
  47. Maeda T., Taniguchi Y., Imaoka K., GCOM-W1 AMSR2 level 1R product: dataset of brightness temperature modified using the antenna pattern matching technique, IEEE Trans. Geoscience and Remote Sensing, 2016, Vol. 54, No. 2, pp. 770–782.
  48. Mears C. A., Wang J., Smith D., Wentz F. J., Intercomparison of total precipitable water measurements made by satellite-borne microwave radiometers and ground-based GPS instruments, J. Geophys. Res. Atmosphere, 2015, Vol. 120, pp. 2492–2504.
  49. Meissner T., Wentz F., Intercalibration of AMSR-E and Windsat brightness temperature measurements over land scenes, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2010, pp. 3218–3219.
  50. Meissner T., Wentz F. J., The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles, IEEE Trans. Geoscience and Remote Sensing, 2012, Vol. 50, No. 8, pp. 3004–3026.
  51. Mitnik L. M., Mitnik M. L., Retrieval of atmospheric and ocean surface parameters from ADEOS-II AMSR data: comparison of errors of global and regional algorithms, Radio Science, 2003, Vol. 38, No. 4, p. 8065, DOI: 10.1029/2002RS002659.
  52. Mitnik L. M., Mitnik M. L., Zabolotskikh E. V., Microwave sensing of the atmosphere-ocean system with ADEOS-II AMSR and Aqua AMSR-E, J. Remote Sensing Society of Japan, 2009, Vol. 29, No. 1, pp. 156–165.
  53. Mitnik L. M., Cherny I. V., Mitnik M. L., Chernyavskii G. M., Kuleshov V. P., Baranyuk A. V., The MTVZA-GY radiometer on the Meteor-M No. 2 satellite: the first 10 months in an orbit, calibration of data and retrieval of geophysical parameters, Intern. Symp. “Atmospheric Radiation and Dynamics” (ISARD–2015), Abstracts, Saint Petersburg – Petrodvorets, 2015, pp. 23–25.
  54. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Water vapor in the atmosphere over Greenland and the surrounding seas from measurements of MTVZA-GY, AMSR2, and GMI microwave radiometers, Intern. Symp. Atmospheric Radiation and Dynamics (ISARD-2017), Abstracts, St. Petersburg, Petrodvorets, 2017, p. 23.
  55. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Cherny I. V., Statistics of surface and atmospheric microwave properties at Summit Station, Greenland from MTVZA-GY observations in the range 10–190 GHz, Progress in Electromagnetics Research Symp., Abstracts, St. Petersburg, Russia, 2017, p. 327.
  56. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Barsukov I. A., Cherny I. V., Chernyavsky G. M., Multichannel Scanning Imager-Sounder MTVZA-GY on Russian Weather Satellite Meteor-M No. 2: The Simulated and Measured Brightness Temperatures in the Range of 10–190 GHz, Progress in Electromagnetics Research Symp., Abstracts, St. Petersburg, Russia, 2017, p. 326.
  57. Mitnik L., Kuleshov V., Mitnik M., Streltsov A. M., Cherniavsky G., Cherny I., Microwave scanner sounder MTVZA-GY on new Russian meteorological satellite Meteor-M N 2: modeling, calibration and measurements, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2017, Vol. 10, No. 7, pp. 3036–3045.
  58. Mitnik L., Kuleshov V., Mitnik M., Cherny I., Cherniavsky G., External calibration of MTVZA-GY/ Meteor-M No.2 imager channels, GSICS Quarterly Newsletter, 2018, Vol. 12, No. 1, pp. 9–10, DOI: 10.7289/V5/QN-GSICS-12-1-2018.
  59. Mitnik L. M., Kuleshov V. P., Mitnik M. L., Baranyuk A. V., Passive microwave observations of South America and surrounding oceans from Russian Meteor-M No. 2 and Japan GCOM-W1 satellites, Intern. J. Remote Sensing, 2018, Vol. 39, No. 13, pp. 4513–4530, DOI: 10.1080/01431161.2018.1425569.
  60. Mitnik L. M., Kuleshov V. P., Pichugin M. K., Mitnik M. L., Sudden stratospheric warming in 2015-2016: Study with satellite passive microwave data and reanalysis, Proc. IEEE Intern. Geoscience and Remote Sensing Symp. (IGARSS), 2018, Valencia, Spain, 2018, pp. 5560–5563.
  61. Mo T., Postlaunch calibration of the NOAA-18 Advanced Microwave Sounding Unit-A, IEEE Trans. Geoscience Remote Sensing, 2007, Vol. 45, No. 7, pp. 1928–1937.
  62. Mo T., A study of the NOAA near-nadir AMSU-A brightness temperatures over Antarctica, J. Atmos. Oceanic Technology, 2010, Vol. 27, No. 6, pp. 995–1004.
  63. Mo T., Calibration of the NOAA AMSU-A radiometers with natural test sites, IEEE Trans. Geoscience Remote Sensing, 2011, Vol. 49, No. 9, pp. 3334–3342.
  64. Moradi I., Ferraro R., Eriksson P., Weng F., Intercalibration and validation of observations from ATMS and SAPHIR microwave sounders, IEEE Trans. Geoscience and Remote Sensing, 2015, Vol. 53, No. 11, pp. 5915–5925.
  65. Nielsen-Englyst P., Høyer L. J., Pedersen T. L., Gentemann C., Alerskans E., Block T., Donlon C., Optimal estimation of sea surface temperature from AMSR-E, Remote Sensing, 2018, Vol. 10, p. 229, DOI: 10.3390/rs10020229.
  66. Nobre C. A., Obregon G. O., Marengo J. A., Fu R., Poveda G., Characteristics of Amazonian climate: Main features. In: Amazonia and Global Change, M. Keller, M. Bustamante, J. Gash, P. Dias (eds.), Geophysical Monograph Series, 2009, Vol. 186, pp. 149–162.
  67. Pearson K., Merchant C., Embury O., Donlon C., The Role of Advanced Microwave Scanning Radiometer 2 channels within an optimal estimation scheme for sea surface temperature, Remote Sensing, 2018, Vol. 10, p. 90, DOI: 10.3390/rs10010090.
  68. Prigent C., Jaumouillé E., Chevallier F., Aires F., A parameterization of the microwave land surface emissivity between 19 and 100 GHz, anchored to satellite-derived estimates, IEEE Trans. Geoscience Remote Sensing, 2008, Vol. 46, No. 2, pp. 344–352.
  69. Rosenkranz P. W., Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements, IEEE Trans. Geoscience and Remote Sensing, 2001, Vol. 39, No. 11, pp. 2429–2435.
  70. Shibata A. A., Wind speed retrieval algorithm by combining 6 and 10 GHz data from Advanced Microwave Scanning Radiometer: Wind speed inside hurricanes, J. Oceanography, 2006, Vol. 62, pp. 351–359.
  71. Spencer R. W., Christy J. R., Precision lower stratospheric temperature monitoring with the MSU: Technique, validation, and results 1979–91, J. Climate, 1993, No. 6, pp. 1194–1204.
  72. Surdyk S., Using microwave brightness temperature to detect short-term surface air temperature changes in Antarctica: an analytical approach, Remote Sensing of Environment, 2002, Vol. 80, pp. 256– 271.
  73. Tian Y., Peters-Lidard C. D., Harrison K. W., Prigent C., Norouzi H., Aires F., Boukabara S. A., Furuzawa F. A., Masunaga H., Quantifying uncertainties in land-surface microwave emissivity retrievals, IEEE Trans. Geosci. Remote Sensing, 2014, Vol. 52, No. 2, pp. 829–840.
  74. Weng F., Zou X., Sun N., Yang H., Tian M., Blackwell W. J., Wang X., Lin L., Anderson K., Calibration of Suomi National Polar-Orbiting Partnership (NPP) Advanced Technology Microwave Sounder (ATMS), J. Geophys. Research. Atmosphere, 2013, Vol. 118, pp. 1–14.
  75. Wilheit T., Comparing calibrations of similar conically scanning window-channel microwave radiometers, IEEE Trans. Geoscience Remote Sensing, 2013, Vol. 51, No. 3, pp. 1453–1464.
  76. Wimmers A. J., Velden C. S., Seamless advective blending of total precipitable water retrievals from polar orbiting satellites, J. Appl. Meteorol. Climatol., 2011, Vol. 50, No. 5, pp. 1024–1036.
  77. Zabolotskikh E., Mitnik L., Chapron B., An updated geophysical model for AMSR-E and SSMIS brightness temperature simulations over oceans, Remote Sensing, 2014, Vol. 6, No. 3, pp. 2317–2342.