ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 295-307

Ionospheric variability over Europe in winter from the ionosonde and GPS/GLONASS data

M.A. Chernigovskaya 1 , B.G. Shpynev 1 , A.S. Yasyukevich 1 , A.A. Mylnikova 1 , D.S. Khabituev 1 , P. Koucká Knížová 2 , D. Kouba 2 , J. Mielich 3 , A. Kozlovsky 4 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Institute of Atmospheric Physics CAS, Prague, Czech Republic
3 Leibniz Institute for Atmospheric Physics, Kühlungsborn, Germany
4 Sodankylä Geophysical Observatory, Oulu, Finland
Accepted: 28.05.2018
DOI: 10.21046/2070-7401-2018-15-4-295-307
The latitudinal dependence of ionospheric variability on the configuration and parameters of high-speed jet streams associated with the winter circumpolar vortex at the stratosphere/lower mesosphere heights are studied. We conducted a joint analysis of the variations of the ionospheric F2-layer electron density peak and total electron content (TEC) of the ionosphere over the mid- and high-latitude regions of Europe in winter months (December to February) from 2007 to 2010 under low solar and geomagnetic activity conditions. The ionosphere parameters were obtained from measurements made at the meridional chain of European vertical sounding ionosondes Rome (41.9°N, 12.5°E), Pruhonice (50.0°N, 14.6°E), Juliusruh (54.6°N, 13.4°E), Sodankylä (67.3°N, 26.6°E). The measurements on the basis of a network of the phase dual-frequency GPS/GLONASS receivers located in the range of 40–70°N and 10–30°E were made. They were used to obtain TEC. The calculation of the vertical total electron content from the initial series was based on the developed “absolute” TEC model taking into account differential code biases. We use the data from the ECMWF ERA-Interim reanalysis to study the dynamics of the winter circumpolar vortex in the Northern Hemisphere. The analysis showed the significant increase in wave-like activity in the stratosphere/lower mesosphere during winter seasons for all analyzed years. Variations of ionospheric parameters observed at different latitudes depend on the station positions relative to the jet stream circulation zone.
Keywords: middle and high atmosphere, ionosphere, atmospheric layers interaction, wave disturbances, TEC, GPS, GLONASS
Full text

References:

  1. Shpynev B. G., Oinats A. V., Lebedev V. P., Chernigovskaya M. A., Orlov I. I., Belinskaya A. Y., Grekhov O. M., Manifestation of gravitational tides and planetary waves in long-term variations in geophysical parameters, Geomagnetism and Aeronomy, 2014, Vol. 54, No. 4, pp. 500–512, DOI: 10.1134/S001679321404015X.
  2. Shpynev B. G., Chernigovskaya M. A., Kurkin V. I., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Leschenko V. S., Mielich J., Prostranstvennye variatsii parametrov ionosfery severnogo polushariya nad zimnimi struinymi techeniyami (Spatial variations of the ionosphere parameters over the Northern Hemisphere winter jet streams), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 4, pp. 204–215, DOI: 10.21046/2070-7401-2016-13-5-204-215.
  3. Shpynev B. G., Chernigovskaya M. A., Khabituev D. S., Spektral’nye kharakteristiki atmosfernykh voln, generiruemykh zimnim stratosfernym struinym techeniem severnogo polushariya (Spectral characteristics of atmospheric waves generated by winter stratospheric jet stream in the Northern Hemisphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 2, pp. 120–131, DOI: 10.21046/2070-7401-2016-13-2-120-131.
  4. Yasyukevich A. S., Chernigovskaya M. A., Mylnikova A. A., Shpynev B. G., Khabituev D. S., Sezonnye variatsii ionosfernoi vozmushchennosti v razlichnykh gelio-geomagnitnykh usloviyakh po dannym GPS/GLONASS nad regionami Vostochnoi Sibiri i Dal’nego Vostoka (Studying the seasonal pattern of the ionospheric variability over Eastern Siberia and Far East region from the GPS/GLONASS data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 4, pp. 249–262, DOI: 10.21046/2070-7401-2017-14-4-249-262.
  5. Chernigovskaya M. A., Shpynev B. G., Ratovsky K. G., Meteorological effects of ionospheric disturbances from vertical radio sounding data, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 235–243, DOI: 10.1016/j.jastp.2015.07.006.
  6. Chernigovskaya M. A., Shpynev B. G., Ratovsky K. G., Belinskaya A. Yu., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchenko V. A., Korenkova N. A., Mielich J., Ionospheric Response to Winter Stratosphere/Lower Mesosphere Jet Stream in the Northern Hemisphere as Derived from Vertical Radio Sounding Data, J. Atmospheric and Solar-Terrestrial Physics, 2017, DOI: 10.1016/j.jastp.2017.08.033.
  7. Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M. A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., Hólm E. V., Isaksen L., Kållberg P., Köhler M.,, Matricardi M., McNally A. P., Monge-Sanz B. M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F., The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly J. Royal Meteorological Society, 2011, Vol. 137, pp. 553–597, DOI: 10.1002/qj.828.
  8. Dow J. M., Neilan R. E., Rizos C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 2009, Vol. 83, pp. 191–198, DOI: 10.1007/s00190-008-0300-3.
  9. Goncharenko L. P., Hsu V. W., Brum C. G. M., Zhang S.-R., Fentzke J. T., Wave signatures in the midlatitude ionosphere during a sudden stratospheric warming of January 2010, J. Geophysical Research. Space Physics, 2013, Vol. 118, pp. 1–16, DOI: 10.1029/2012JA018251.
  10. Hoffmann P., Jacobi Ch., Borries C., Possible planetary wave coupling between the stratosphere and ionosphere by gravity wave modulation, J. Atmospheric and Solar-Terrestrial Physics, 2012, Vol. 75–76, pp. 71–80, DOI: 10.1016/j.jastp.2011.07.008.
  11. Hunsucker R. D., Hargreaves J. K., The High-Latitude Ionosphere and Its Effects on Radio Propagation, New York: Cambridge University Press, 2003, 617 p.
  12. Koucká Knížová P., Mošna Z., Kouba D., Potužníková K., Boška J., Influence of meteorological systems on the ionosphere over Europe, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 244–250, DOI: 10.1016/j.jastp.2015.07.017.
  13. Lieberman R. S., Riggin D. M., Ortland D. A., Oberheide J., Siskind D. E., Global observations and modeling of nonmigrating diurnal tides generated by tide-planetary wave interactions, J. Geophysical Research. Atmosphere, 2015, Vol. 120, pp. 11419–11437, DOI: 10.1002/2015JD023739.
  14. Medvedeva I., Ratovsky K., Studying atmospheric and ionospheric variabilities fromlong-termspectrometric and radio sounding measurements, J. Geophysical Research. Space Physics, 2015, Vol. 120, pp. 5151–5159, DOI: 10.1002/2015JA021289.
  15. Medvedev A. V., Ratovsky K. G., Tolstikov M. V., Alsatkin S. S., Scherbakov A. A., Studying of the spatial-temporal structure of wavelike ionospheric disturbances on the base of Irkutsk incoherent scatter radar and Digisonde data, J. Atmospheric and Solar-Terrestrial Physics, 2013, Vol. 105–106, pp. 350–357, DOI: 10.1016/j.jastp.2013.09.001.
  16. Pancheva D., Evidence for Nonlinear Interaction Between Quasi-2-Day Wave and Long-Period Oscillations in the Lower Thermosphere above Bulgaria, Comptes Rendus de l’Academie Bulgare des Sciences, 2001, Vol. 54, No. 2, pp. 39–44.
  17. Pancheva D., Mukhtarov P., Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region, Geophysical Research Letters, 2010, Vol. 37, p. L14105, DOI: 10.1029/2010GL044039.
  18. Pancheva D. V., Mukhtarov P. J., Mitchell N. J., Fritts C. D., Riggin M. D., Takahashi H., Batista P. P., Clemesha B. R., Gurubaran S., Ramkumar G., Planetary wave coupling (5–6-day waves) in the low-latitude atmosphere-ionosphere system, J. Atmospheric and Solar-Terrestrial Physics, 2008, Vol. 70, pp. 101–122, DOI: 10.1016/j.jastp.2007.10.003.
  19. Pedatella N. M., Forbes J. M., Evidence for stratosphere sudden warming–ionosphere coupling due to vertically propagating tides, Geophysical Research Letters, 2010, Vol. 37, p. L11104, DOI: 10.1029/2010GL043560.
  20. Polyakova A. S., Chernigovskaya M. A., Perevalova N. P., Ionospheric effects of sudden stratospheric warmings in eastern Siberia region, J. Atmospheric and Solar-Terrestrial Physics, 2014, Vol. 120, pp. 15–23, DOI: 10.1016/j.jastp.2014.08.011.
  21. Shpynev B. G., Churilov S. M., Chernigovskaya M. A., Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere, J. Atmospheric and Solar-Terrestrial Physics, 2015, Vol. 136, pp. 201–215, DOI: 10.1016/j.jastp.2015.07.005.
  22. Shpynev B. G., Kurkin V. I., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Yu., Grigorieva S. A., Stepanov A. E., Bychkov V. V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67, p. 18, DOI: 10.1186/s40623-015-0187-1.
  23. Yasyukevich Yu. V., Mylnikova A. A., Polyakova A. S., Estimating the total electron content absolute value from the GPS/GLONASS data, Results in Physics, 2015, Vol. 5, pp. 32–33, DOI: 10.1016/j.rinp.2014.12.006.
  24. Yasyukevich A. S., Chernigovskaya M. A., Mylnikova A. A., Shpynev B. G., Khabituev D. S., Seasonal and helio-geomagnetic activity pattern of the ionospheric variability over Russia’s Eastern Siberia and Far East region from the GPS/GLONASS data, 2017 Progress in Electromagnetics Research Symposium — Spring (PIERS), St. Petersburg, 2017, pp. 2015–2022, DOI: 10.1109/PIERS.2017.8262081.
  25. Zolotukhina N., Polekh N., Pirog O., Variability of the ionosphere over Irkutsk at low solar activity, Advances in Space Research, 2011, Vol. 48, No. 10, pp. 1606–1612, DOI: 10.1016/j.asr.2011.08.006.
  26. Yiğit E., Medvedev A. S., Internal waves coupling processes in Earth’s atmosphere, Advances in Space Research, 2015, Vol. 55, pp. 983–1003, DOI: 10.1016/j.asr.2014.11.020.