ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 131-141

Method for automated crop types mapping using remote sensing data and a plant growth simulation model

D.E. Plotnikov 1 , S.A. Khvostikov 1 , S.A. Bartalev 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 01.08.2018
DOI: 10.21046/2070-7401-2018-15-4-131-141
This paper presents a method for automatic generation of representative and unbiased training set for in-season crop types mapping, based on WOFOST crop simulation model, previously parameterized using ground truth data, as well as meteodata and satellite historical data. The method provided confident mapping of agricultural fields, planted with five different crop types using no ground truth data or a-priori information about their in-season phenology. Calibration fields, most typical for each specific crop, were identified through comparison of their remote sensing-based seasonal time series with modeled LAI values, used as in-season temporal reference. Relatively simple criteria were then used to generate a training set of required fidelity. Overall mapping accuracy calculated using relevant ground truth data has reached 85 %. This kind of approach may be versatile for automated mapping of broad variety of crop types over large heterogeneous areas in cases when in-season ground truth timely information or other kind of calibration data is not available.
Keywords: crop mapping, remote sensing, automated training set building, object-oriented classification, simulation modeling, WOFOST
Full text

References:

  1. Bartalev S. A., Egorov V. A., Zharko V. O., Loupian E. A., Plotnikov D. E., Khvostikov S. A., Shabanov N. V., Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii (Land cover mapping over Russia using Earth observation data), Moscow: IKI RAN, 2017, 208 p.
  2. Loupian E. A., Proshin A. A., Burtsev M. A., Balashov I. V., Bartalev S. A., Efremov V. Yu., Kashnitskii A. V., Mazurov A. A., Matveev A. M., Sudneva O. A., Sychugov I. G., Tolpin V. A., Uvarov I. A., Tsentr kollektivnogo pol’zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh IKI RAN dlya resheniya zadach izucheniya i monitoringa okruzhayushchei sredy (IKI center for collective use of satellite data archiving, processing and analysis systems aimed at solving the problems of environmental study and monitoring), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 5, pp. 247–267.
  3. Plotnikov D. E., Bartalev S. A., Zharko V. O., Mikhailov V. V., Prosyannikova O. I., Eksperimental’naya otsenka raspoznavaemosti agrokul’tur po dannym sezonnykh sputnikovykh izmerenii spektral’noi yarkosti (An experimental assessment of crop types recognisability using time-series of intra-seasonal spectral reflectance measurements by satellite sensor), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, Vol. 8, No. 1, pp. 199–208.
  4. Plotnikov D. E., Kolbudaev P. A., Bartalev S. A., Vydelenie sezonno-odnorodnykh oblastei na osnove analiza vremennykh serii sputnikovykh izobrazhenii (Identification of dynamically homogeneous areas with time series segmentation of remote sensing data), Komp’yuternaya optika, Samara: ISOI RAN, 2018, Vol. 42, No. 3, pp. 447–456, DOI: 10.18287/2412-6179-2018-42-3-447-456.
  5. Bartalev S. A., Plotnikov D. E., Loupian E. A., Mapping of arable land in Russia using multiyear time series of MODIS data and the LAGMA classification technique, Remote Sensing Lett., 2016, Vol. 7, No. 3, pp. 269–278, DOI: 10.1080/2150704X.2015.1130874.
  6. Bingfang W., Jihua M., Qiangzi L., Nana Y., Xin D., Miao Z., Remote sensing-based global crop monitoring: experiences with China’s CropWatch system, Intern. J. Digital Earth, 2014, Vol. 7, Issue 2, pp. 113–137, DOI: 10.1080/17538947.2013.821185.
  7. Breiman L., Random forests, Machine Learning, 2001, Vol. 45, Issue 1, pp. 5–32, DOI: 10.1023/A:1010933404324.
  8. de Wit A., Duveiller G., Defourny P., Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations, Agricultural and Forest Meteorology, 2012, Vol. 164, pp. 39–52.
  9. Diepen C., Wolf J., Keulen H., Rappoldt C., WOFOST: a simulation model of crop production, Soil Use and Management, 1989, Vol. 5, Issue 1, pp. 16–24.
  10. Fischer G., Nachtergaele F., Prieler S., Teixeira E., Tòth G., Velthuizen H., Verelst L., Wiberg D., Global Agro-Ecological Zones (GAEZ v3.0), Model Documentation. IIASA/FAO, 2012.
  11. Foerster S., Kaden K., Förster M., Itzerott S., Crop type mapping using spectral-temporal profiles and phenological information, Computers and Electronics in Agriculture, 2012, Vol. 89, pp. 30–40, DOI: 10.1016/j.compag.2012.07.015.
  12. Foody M. G., Mathur A., Sanchez Hernandez C., Boyd D., Training set size requirements for the classification of a specific class, Remote Sensing of Environment, 2006, Vol. 104, pp. 1–14, DOI: 10.1016/j.rse.2006.03.004.
  13. Ines A. V. M., Das N. N., Hansen J. W., Njoku E. G., Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction, Remote Sensing of Environment, 2013, Vol. 138, pp. 149–164, DOI: 10.1016/j.rse.2013.07.018.
  14. Jones J. W., Hoogenboom G., Porter C. H., Boote K. J., Batchelor W. D., Hunt L. A., Wilkens P. W., Singh U., Gijsman A. J., Ritchie J. T., The DSSAT cropping system model, European J. Agronomy, 2003, Vol. 18, Issue 3, pp. 235–265, DOI: 10.1016/S1161-0301(02)00107-7.
  15. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chellian M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., The NCEP/NCAR 40-year reanalysis project, Bull. American Meteorological Society, 1996, Vol. 77, Issue 3, pp. 437–471, DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  16. Lobell D. B., Thau D., Seifert C., Engle E., Little B., A scalable satellite-based crop yield mapper, Remote Sensing of Environment, 2015, Vol. 164, pp. 324–33, DOI: 10.1016/j.rse.2015.04.021.
  17. Massey R., Sankey T., Congalton R., Yadav K., Thenkabail P., Ozdogan M., Sánchez Meador A., MODIS phenology-derived, multi-year distribution of conterminous U. S. crop types, Remote Sensing of Environment, 2017, Vol. 198, pp. 490–503, DOI: 10.1016/j.rse.2017.06.033.
  18. Palchoudhuri Y., Valcarce-Diñeiro R., King P., Sanabria-Soto M., Classification of multi-temporal spectral indices for crop type mapping: a case study in Coalville, UK, J. Agricultural Science, 2018, Vol. 156, Issue 1, pp. 24–36, DOI: 10.1017/S0021859617000879.
  19. Song Q., Hu Q., Zhou Q., Hovis C., Xiang M., Tang H., Wu W., In-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based Image Analysis and Random Forest, Remote Sensing, 2017, Vol. 9, p. 1184, DOI: 10.3390/rs9111184.
  20. Tripathy R., Chaudhari K. N., Mukherjee J., Ray S. S., Patel N. K., Panigrahy S., Parihar J., Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs, Remote Sensing Lett., 2013, Vol. 4, Issue 1, pp. 19–28, DOI: 10.1080/2150704X.2012.683117.
  21. Waldner F., De Abelleyra D., Santiago V., Zhang M., Wu B., Plotnikov D.E., Bartalev S.A., Lavreniuk M., Skakun S., Kussul N. N., Le Maire G., Dupuy S., Jarvis I., Defourny P., Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity, Intern. J. Remote Sensing, 2016, Vol. 37, Issue 14, DOI: 10.1080/01431161.2016.1194545.
  22. Zafar S., Waqar M., Crop Type Mapping by Integrating Satellite Data and Crop Calendar over Okara District, Punjab (Pakistan), J. Space Technology, 2014, Vol. 4, Issue 1, pp. 21–25.