ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 189-199

Temporal variability of mesoscale eddies characteristics in the Australian – Antarctic basin (based on satellite data)

T.V. Belonenko 1 , N.V. Sandalyuk 1 
1 Saint Petersburg State University, Saint Petersburg, Russia
Accepted: 10.07.2018
DOI: 10.21046/2070-7401-2018-15-4-189-199
We compare two different types of data for two long-lived eddies in the Australian – Antarctic basin. These are sea level anomaly data from the Copernicus Marine Environment Monitoring Service portal and dataset from portal Mesoscale Eddies in Altimeter Observations of SSH obtained via automated eddy identification procedure. Using altimetry data from the Copernicus Marine Environment Monitoring Service, we calculate phase velocities of the Rossby waves basing on long-wave approximation. We also calculate empirical velocities from the Hovmöller diagrams using Radon method and velocities of eddies provided by Mesoscale Eddies in Altimeter Observations of SSH. The empirical velocity estimates are shown to be slightly higher than velocity estimates predicted by the Rossby wave theory, but they are significantly lower than velocities of mesoscale eddies calculated from the dataset of Mesoscale Eddies in Altimeter Observations of SSH. Temporal variability of physical characteristics of the observed eddies are analyzed, such as amplitude, rotation speed, drift speed, lifetime, radius, and parameter of nonlinearity. Temporal variability of eddy physical characteristics are proved very changeable and the extremum values can be twice to thrice the mean values.
Keywords: SLA, sea level anomaly, sea level, altimetry, mesoscale, eddies, Rossby waves, Mesoscale Eddies in Altimeter Observations of SSH, nonlinearity parameter, Australian-Antarctic basin
Full text

References:

  1. Belonenko T. V., Nablyudeniya voln Rossbi v severo-zapadnoi chasti Tikhogo okeana (Rossby wave observation in the Northwest Pacific), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 209–215.
  2. Belonenko T. V., Kubryakov A. A., Vremennaya izmenchivost’ fazovoi skorosti voln Rossbi v Severnoi chasti Tikhogo okeana (Temporal variability of the phase velocity of Rossby waves in the North Pacific), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 3, pp. 9–18.
  3. Belonenko T. V., Zaharchuk E. A., Fuks V. R., Gradientno-vikhrevye volny v okeane (Gradient-vorticity waves in the Ocean), St. Petersburg: Izd. SPbSU, 2004, 215 p.
  4. Zhmur V. V., Mezomasshtabnye vikhri v okeane (Mesoscale eddies in the ocean), Moscow: Izd. GEOS, 2011, 290 p.
  5. Kamenkovich V. M., Koshlyakov M. N., Monin A. S., Sinopticheskie vikhri v okeane (Synoptic eddies in the ocean), Leningrad: Gidrometeoizdat, 1987, 310 p.
  6. Monin A. S., Zhiharev G. M., Okeanskie vikhri (Ocean eddies), Uspekhi fizicheskih nauk, 1990, Vol. 160, No. 5, pp. 1–47.
  7. Nezlin M. V., Solitony Rossbi (Rossby Solitons), Uspekhi fizicheskih nauk, 1986, Vol. 150, No. 5, pp. 1–58.
  8. Petkilev P. S., Obzor algoritmov obnaruzheniya i trekinga mezomasshtabnykh vikhrei (Review of mesoscale eddy detection and tracking algorithms), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 3, pp. 129–149.
  9. Sandalyuk N. V., Goto K., Belonenko T. V., Sinopticheskie vikhri v Avstralo-Antarkticheskom basseine po dannym sputnikovoi al’timetrii (A study of mesoscale eddies in Australian-Antarctic basin using altimetry data), Uchenye zapiski RGGMU, 2018, No. 50, pp. 109–117.
  10. Belonenko T. V., Kubrjakov A. A., Stanichny S. V., Spectral Characteristics of Rossby Waves in the Northwestern Pacific based on Satellite Altimetry, Izvestiya. Atmospheric and Oceanic Physics, 2016, Vol. 52, Issue 9, pp. 920–928.
  11. Challenor P. G., Cipollini P., Cromwell D., Use of the 3D Radon transform to examine the properties of oceanic Rossby waves, J. Atmos. Oceanic Technol., 2001, Vol. 18, pp. 1558–1566.
  12. Chelton D. B., Schlax M. G., Global observations of oceanic Rossby waves, Science, 1996, Vol. 272, pp. 234–238.
  13. Chelton D. B., Schlax M. G., Samelson R. M., de Szoeke R. A., Global observations of large oceanic eddies, Geophysical Research Letters, 2007, Vol. 34, No. 15.
  14. Chelton D. B., Schlax M. G., Samelson R.M, Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 2011, Vol. 91, pp. 167–216.
  15. Fu L. L., Le Traon P.-Y., Satellite altimetry and ocean dynamics, Comptes Rendus Geosciences, 2006, Vol. 338, Issues 14–15, pp. 1063–1076.
  16. Killworth P. D., Chelton D. B., de Szoeke R. A., The speed of observed and theoretical long extra-tropical planetary waves, J. Phys. Oceanogr., 1997, Vol. 27, pp. 1946–1966.
  17. LaCasce J. H., Pedlosky J., The Instability of Rossby Basin Modes and the Oceanic Eddy Field, J. Phys. Oceanogr., 2004, Vol. 34, pp. 2027–2041.
  18. Maharaj A. M., Cipollini P., Holbrook N. J., Killworth P. D., Blundell J. R., An evaluation of the classical and extended Rossby wave theories in explaining spectral estimates of the first few baroclinic modes in the South Pacific Ocean, Ocean Dynamics, 2007, Vol. 57, No. 3, pp. 173–187.
  19. Pujol M.-I., Faugère Y., Taburet G., Dupuy S., Pelloquin C., Ablain M., Picot N., DUACS DT2014: The new multi-mission altimeter dataset reprocessed over 20 years, Ocean Sci., 2016, Vol. 12, pp. 1067–109, DOI: 10.5194/os-12-1067-2016.