ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 249-264

Conditions and mechanisms of mesoscale cyclogenesis over the Chukchi Sea

I. A. Gurvich 1 , E.V. Zabolotskikh 2 , M.K. Pichugin 1 
1 V. I. Il’ichev Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
2 Russian State Hydrometeorological University, Saint Petersburg, Russia
Accepted: 07.06.2018
DOI: 10.21046/2070-7401-2018-15-4-249-264
An investigation was conducted to identify the areas of mesocyclonic activity over the Chukchi Sea. The conditions and mechanisms of mesoscale cyclogenesis were revealed and classified. The study was based on the synergistic use of multi-sensor satellite measurement data and the CFSv2 model from the operational analysis of the Climate Forecast System, Version 2 of the National Centers for Environmental Prediction (NCEP), supplemented by synoptic surface analysis and baric topography maps. Satellite visible and infrared (IR) images of the MODIS spectroradiometer from the Aqua and Terra satellites and the VIIRS radiometer from the Suomi NPP satellite were used to identify polar mesocyclone (PMC) cloud system. The fields of the atmospheric water vapor content, cloud liquid water content, and sea surface wind speed were retrieved from the measurements of the AMSR2 passive microwave radiometer onboard GCOM-W1 satellite, using the algorithms based on brightness temperature physical modeling with the subsequent geophysical parameter retrievals using neural networks. A complex analysis of the CFSv2 and ASCAT (MetOp-A/B) sea surface wind vector fields in period of September-December 2016 was performed. Four typical mechanisms of mesoscale cyclogenesis over the Chukchi Sea and north adjacent Arctic Ocean were identified: I ― PMCs in the cyclonic wind shear along the baric trough axis; II ― reverse-shear PMCs in the convergence zone of air flows; III ― leeward PMCs under the influence of the orography of the Lisburn Peninsula in the northeast direction of the onflowing stream; IV ― comma cloud behind the cold front in the rear of synoptic scale cyclones (secondary vortices). It is found out that the orographic effect shows itself when a PMC crosses the eastern extremity of the Wrangel Island. The main condition for the appearance and development of PMCs is the presence of cold upper-level lows and shallow baroclinic zones in the atmospheric boundary layer, which are formed as a result of large temperature contrasts along the sea ice edges. Despite the low atmospheric water vapor content in the PMC cloud system (4–8 kg/m2), they are clearly distinguished in water vapor fields, which can be used to identify them along with sea surface wind fields and satellite images of clouds.
Keywords: polar mesocyclones, Chukchi Sea, satellites, multisensory measurements, atmosphere water vapor content, cloud liquid water, sea surface wind, ice cover
Full text

References:

  1. Gurvich I. A., Pichugin M. K., Issledovanie kharakteristik intensivnykh mezomasshtabnykh tsiklonov nad dal’nevostochnymi moryami na osnove sputnikovogo mul’tisensornogo zondirovaniya (Research of characteristics of intensive mesoscale cyclones over the Far Eastern Seas on the basis of satellite multisensor sounding), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 1, pp. 51–59.
  2. Gurvich I. A., Zabolotskikh E. V., Mezomasshtabnye polyarnye tsiklony nad vostochnym sektorom Arktiki po dannym mul’tisensornogo sputnikovogo zondirovaniya (Mesoscale polar lows over the Eastern Arctic Sector according to multisensor satellite remote sensing), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 3, pp. 101–112.
  3. Gurvich I. A., Mitnik L. M., Mitnik M. L., Mezomasshtabnyi tsiklogenez nad dal’nevostochnymi moryami: issledovanie na osnove sputnikovykh mikrovolnovykh radiometricheskikh i radiolokatsionnykh izmerenii (Mesoscale Cyclogenesis over the Far Eastern Seas: Study Based on Satellite Microwave Radiometric and Radar Measurements), Issledovanie Zemli iz kosmosa, 2008, No. 5, pp. 58–73.
  4. Gurvich I. A., Zabolotskikh E. V., Pichugin M. K., Osobennosti mezomasshtabnogo tsiklogeneza nad vostochnym sektorom Evraziiskoi Arktiki (Features of mesoscale cyclogenesis over the eastern sector of the Eurasian Arctic), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, Vol. 13, No. 5, pp. 227–237.
  5. Zabolotskikh E. V., Gurvich I. A., Chapron B., New areas of polar lows over the Arctic as a result of the decrease in sea ice extent, Izvestiya. Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 9, pp. 1021–1033.
  6. Zimich P. I., Atmosfernye protsessy i pogoda Vostochnoi Arktiki (Atmospheric processes and weather Eastern Arctic), Vladivostok: Dal’nauka, 1998, 236 p.
  7. Blechschmidt A. M., A 2-year climatology of polar low events over the Nordic Seas from satellite remote sensing, Geophys. Res. Lett., 2008, Vol. 35, No. 9, L09815, DOI: 10.1029/2008GL033706.
  8. Bobylev L. P., Zabolotskikh E. V., Mitnik L. M., Mitnik M. L., Arctic polar low detection and monitoring using atmospheric water vapor retrievals from satellite passive microwave data, IEEE Trans. Geosci. Rem. Sens., 2011, Vol. 49, No. 9, pp. 3302–3310.
  9. Chen F., von Storch H., Trends and Variability of North Pacific Polar Lows, Advances in Meteorology, 2013, Vol. 2013, Article ID 170387, 11 p., URL: http://dx.doi.org/10.1155/2013/170387.
  10. Condron A., Renfrew I. A., The impact of polar mesoscale storms on northeast Atlantic Ocean circulation, Nat. Geosci., 2012, Vol. 6, No. 1, pp. 34–37.
  11. Fu G., Polar lows: Intense cyclones in winter, China Meteorological Press, 2000, 206 p.
  12. Gurvich I. A., Zabolotskikh E. V., Pichugin M. K., Mesoscale cyclones and cold air outbreaks over the eastern part of the Eurasian Arctic using the satellite multisensor measurements and reanalysis, 13th European Polar Lows Working Group (EPLWG) Workshop, 25–26 April 2016, Paris, France, 2016, URL: https://www.uni-trier.de/index.php?id=57240.
  13. Kolstad E. W., A new climatology of favourable conditions for reverse-shear polar lows, Tellus, 2006, Vol. 58A, pp. 344–354.
  14. Kristjansson J. E., Thorsteinsson S., Kolstad E. W., Blechschmidt A.-M., Orographic influence of east Greenland on a polar low over the Denmark Strait, Quarterly J. Royal Meteorological Society, 2011, Vol. 137A, pp. 1773–1789.
  15. Martin R., Moore G. W. K., Transition of a synoptic system to a polar low via interaction with the orography of Greenland, Tellus, 2006, Vol. 58A, pp. 236–253.
  16. Mitnik L. M., Gurvich I. A., Satellite sensing of intense winter mesocyclones forming to the east of Korea, Current Development in Oceanography, 2011, Vol. 2, No. 2, pp. 115–123.
  17. Ninomiya K., Polar/comma-cloud lows over the Japan Sea and the northwestern Pacific in winter, J. Meteorol. Society of Japan, 1989, Vol. 67, pp. 83–97.
  18. Ninomiya K., Wakahara K., Ohkubo H., Meso-a-scale low development over the northeastern Japan Sea under the influence of a parent large-scale low and a cold vortex aloft, J. Meteorol. Society of Japan, 1993, Vol. 71, pp. 73–91.
  19. Ninomiya K., Nishimura T., Susuki T., Matsumura S., Ohfuchi W., Polar low genesis over the east coast of the Asian continent simulated in an AGCM, J. Meteorol. Society of Japan, 2003, Vol. 81, No. 4, pp. 697–712.
  20. Orlanski I., A rational subdivision of scales for atmospheric processes, Bull. Amer. Meteor. Soc., 1975, Vol. 56, pp. 527–530.
  21. Rasmussen E. A., Turner J., Polar lows: mesoscale weather systems in the polar regions, Cambridge: Cambr. Univ. Press, 2003, 612 p.
  22. Rojo M., Claud C., Mallet P.-E., Noer R. G., Carleton A. M., Vicomte M., Polar low tracks over the Nordic Seas: a 14-winter climatic analysis, Tellus A: Dynamic Meteorology and Oceanography, 2015, Vol. 67, 24660, URL: http://dx.doi.org/10.3402/tellusa.v67.24660.
  23. Sergeev D. E., Renfrew I. A., Spengler T., Dorling S. R., Structure of a shear-line polar low, Quarterly J. Royal Meteorological Society, 2017, Vol. 143, pp. 12–26.
  24. Shimada U., Wada A., Yamazaki K., Kitabatake N., Roles of an upper-level cold vortex and low-level baroclinicity in the development of polar lows over the Sea of Japan, Tellus A: Dynamic Meteorology and Oceanography, 2014, Vol. 66, 24694, URL: http://dx.doi.org/10.3402/tellusa.v66.24694.
  25. Terpstra A., Spengler T., Moore R. W., Idealised simulations of polar low development in an Arctic moist-baroclinic environment, Quarterly J. Royal Meteorological Society, 2015, pp. 1987–1996.
  26. Tsuboki K., Asai T., The multi-scale structure and development mechanism of mesoscale cyclones over the Sea of Japan in winter, J. Meteorol. Society of Japan, 2004, Vol. 82, pp. 597–621.
  27. Watanabe Shun-ichi I., Niino H., Yanase W., Climatology of polar mesocyclones over the Sea of Japan using a new objective tracking method, Monthly Weather Review, 2016, Vol. 144, No. 7, pp. 2503–2515.
  28. Yanase W., Niino H., Watanabe Shun-ichi I., Hodges K., Zahn M., Spengler T., Gurvich I., Climatology of polar lows over the Sea of Japan using the JRA-55 reanalysis, J. Climate, 2016, Vol. 29, No. 2, pp. 419–437.
  29. Zabolotskikh E. V., Mitnik L. M., Chapron B., New approach for severe marine weather study using satellite passive microwave sensing, Geophys. Res. Lett., 2013, Vol. 40, No. 13, pp. 3347–3350.
  30. Zabolotskikh E. V., Gurvich I. A., Chapron B., Polar lows over the eastern part of the Eurasian Arctic: The sea-ice retreat consequence, Geoscience and Remote Sensing Lett., 2016, Vol. 13, No. 10, pp. 1492–1496.
  31. Zabolotskikh E., Gurvich I., Myasoedov A., Chapron B., Detection and study of the polar lows over the arctic sea ice edge, Proc. IGARSS 2016, 10–15 July 2016, Beijing, China, 2016, pp. 7705–7707.
  32. Zabolotskikh E. V., Gurvich I. A., Chapron B., Detectability of the arctic polar lows over the Barents Sea ice edge using multi-sensor approach, Proc. Progress in Electromagnetics Research Symp. ― Fall (PIERS ‒ FALL), 2017, pp. 2380–2384.