ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 58-67

The reliability of a digital elevation model of the Arkhangelsk Region for geoecological research

A.L. Mineev 1 , E.V. Polyakova 1 , Yu.G. Kutinov 1, 2 , Z.B. Chistova 1 
1 Federal Center for Integrated Arctic Research RAS, Arkhangelsk, Russia
2 Space Monitoring Center of the Arctic NARFU, Arkhangelsk, Russia
Accepted: 10.07.2018
DOI: 10.21046/2070-7401-2018-15-4-58-67
Information on the shape of the Earth’s surface is in demand when solving many geoecological problems and is traditionally represented in the form of maps (contour lines, isohypses, isobaths, etc.). At present, the main way to represent the shape of the earth’s surface is the digital elevation model (DEM). With the development of computer and aerospace technologies, digital modeling of the relief has become an independent scientific discipline ― geomorphometry, the subject of which is quantitative modeling and analysis of the relief of the earth’s surface, as well as the interrelations between the relief and other natural and anthropogenic components of geosystems. Earlier the authors have constructed a digital model of the relief on the territory of the Arkhangelsk region on the basis of ASTER GDEM v.2, its preparation and correction in the SAGA GIS software environment. This article analyzes the suitability of the constructed DEM for carrying out geoecological studies based on it. The accuracy (reliability) of the constructed DEM is verified by comparison with the points of the planned survey network of open vector GIS data Panorama; DEM of the Belomorsko-Kuloyskoe plateau constructed with the use of topographic maps of scale 1:200 000 in GIS GRASS software; by field measurements of heights carried out with the use of a GPS-navigator. It has been established that only 2 % of the values have a discrepancy of more than 20 m. These residual values fall on the territory where ASTER GDEM v.2 has been absent in the original form. In general, the DEM constructed is accurate (reliable) and suitable for further geomorphometric analysis aiming to obtain geoecologically significant information.
Keywords: digital elevation model, ASTER GDEM v.2, Arkhangelsk region, SAGA GIS
Full text


  1. Volkov N. M., Printsipy i metody kartometrii (Principles and methods of cartometry), Moscow: Izd. AN SSSR, 1950, 327 p.
  2. Gofarov M. Yu., Bolotov I. N., Kutinov Yu. G., Landshafty Belomorsko-Kuloiskogo plato: Tektonika, podstilayushchie porody, rel’ef i rastitel’nyi pokrov (Landscapes of the Belomorsko-Kuloiskogo plateau: Tectonics, bedrock, topography and vegetation cover), Ekaterinburg: UrO RAN, 2006, 158 p.
  3. Konovalov N. E., Tsifrovoe modelirovanie topograficheskikh uslovii mestnosti dlya proektirovaniya lineinykh sooruzhenii (Digital modeling of topographic conditions of the terrain for the design of linear structures), Tr. GiprodorNII, 1974, Vol. 8, pp. 21–33.
  4. Kutinov Yu. G. Ekogeodinamika Arkticheskogo segmenta zemnoi kory (Ecogeodynamics of the Arctic Segment of the Earth’s Crust), Ekaterinburg: UrO RAN, 2005, 388 p.
  5. Mineev A. L., Kutinov Yu. G., Chistova Z. B., Polyakova E. V., Podgotovka tsifrovoi modeli rel’efa dlya issledovaniya ekzogennykh protsessov severnykh territorii Rossiiskoi Federatsii (Preparation of a digital elevation model for the study of exogenous processes in the northern territories of the Russian Federation), Prostranstvo i Vremya, 2015, No. 3(21), pp. 278–291, fixed network address 2226-7271provr_st3-21.2015.83.
  6. Mineev A. L., Polyakova E. V., Kutinov Yu. G., Chistova Z. B., Metodicheskie aspekty sozdaniya tsifrovoi modeli rel’efa Arkhangel’skoi oblasti na osnove ASTER GDEM V.2 (Methodical aspects of creating a digital elevation model of the Arkhangelsk region based on ASTER GDEM V.2), Sovremennye problemy nauki i obrazovaniya, 2015, No. 2, URL:
  7. Novakovskii B. A., Prasolov S. V., Prasolova A. I., Tsifrovye modeli rel’efa real’nykh i abstraktnykh geopolei (Digital elevation models of real and abstract geofields), Moscow: Nauchnyi mir, 2003, 64 p.
  8. Rasshirenie vozmozhnostei natsional’nogo kartografirovaniya na osnove usovershenstvovannykh serii Advanced Elevation kompanii DigitalGlobe (Expanding national mapping capabilities through Digital Elevation Advanced Elevation), Russian translation by D. O. Mordovina, E. N. Gorbacheva, Geomatika, 2012, No. 4, pp. 37–39.
  9. Simonov Yu. G., Morfometricheskii analiz rel’efa (Morphometric analysis of the relief), Smolensk: Izd. Smolenskogo gumanitarnogo universiteta, 1998, 271 p.
  10. Ufimtsev G. F., Tektonicheskii analiz rel’efa (na primere Vostoka SSSR) (Tectonic analysis of the relief (on the example of the East of the USSR)), Novosibirsk: Nauka, 1984, 183 p.
  11. Florinskii I. V., Teoriya i prilozheniya matematiko-kartograficheskogo modelirovaniya rel’efa: Diss. dokt. tekhn. nauk (Theory and applications of mathematical and cartographic modeling of relief: Dr. techn. sci. thesis), Pushchino, 2010, 267 p.
  12. Chentsov V. N., Morfometricheskie pokazateli na geomorfologicheskoi karte melkogo masshtaba (Morphometric indicators on a small-scale geomorphological map), Trudy Instituta geografii, 1948, Vol. 39, pp. 291–306
  13. Dawod G., Al-Ghamdi K., Reliability of Recent Global Digital Elevation Models for Geomatics Applications in Egypt and Saudi Arabia, J. Geographic Information System, 2017, Vol. 9, pp. 685–698, URL:
  14. Geomorphometry: Concepts, Software, Applications, Hengl T., Reuter H. I. (Eds.), Amsterdam: Elsevier, 2009, 796 p.
  15. Huggett R. J., Cheesman J., Topography and the Environment, Harlow: Pearson Education, 2002, 274 p.
  16. Mark D. M., Geomorphometric parameters: a review and evaluation, Geografiska Annaler. Series A, Physical Geography, 1975, Vol. 57(3–4), pp. 165–177.
  17. Miller C. L., Leflamme R. A., The digital terrain model ― theory and application, Photogramm. Eng., 1958, Vol. 24(3), pp. 433–442.
  18. Strahler A. N., Quantitative slope analysis, Geol. Soc. Am. Bull., 1956, Vol. 67(5), pp. 571–596.
  19. Wang L., Liu H., An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling, Intern. J. Geographical Information Science, 2006, Vol. 20(2), pp. 193–213, URL: