ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 283-294

Influence of meteorological disturbances in February-March 2016 on the state of the upper neutral atmosphere and ionosphere over Eastern Siberia

I.V. Medvedeva 1 , K.G. Ratovsky 1 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
Accepted: 31.07.2018
DOI: 10.21046/2070-7401-2018-15-4-283-294
The results of studying the state of the neutral upper atmosphere and the ionosphere over the Eastern Siberia in February-March 2016 are presented. In that time interval, over the Northern Hemisphere two sudden stratospheric warming (SSW) events were observed: minor SSW in early February and final stratospheric warming in early March, 2016. The data from spectrometric measurements of OH(6-2), 834.0 nm, and O2(0-1), 864.5 nm, emissions from the Geophysical Observatory at the Institute of Solar-Terrestrial Physics SB RAS (51.8° N, 103.1° E, Tory) were used. The vertical sounding data on the peak electron density (NmF2), and on the peak height (hmF2) were also analyzed. These data were obtained with the DPS-4 Irkutsk ionosonde (52.3° N, 104.3° E). For the analysis, we also used the MLS Aura satellite data of vertical temperature profiles and the MERRA reanalysis data.
We found that both analyzed SSWs significantly affected the mesosphere-low thermosphere (MLT) and the ionospheric F2-region. At the MLT heights a significant increase in the OH and O2 emission intensities, a decrease in the atmosphere temperature, and an increase in wave activity were observed. In the F2-region we revealed significant (up to ~80 %) NmF2 positive disturbances in the postmidnight hours, which were not associated with geomagnetic activity variations. The observed effects can be caused by the amplification of the wave activity and the enhancement of vertical motion in the atmosphere during the SSWs.
Keywords: sudden stratospheric warming, atmosphere, ionosphere, hydroxyl airglow, MLT, peak electron density, atmosphere-ionosphere coupling
Full text


  1. Vargin P. N., Medvedeva I. V., Temperature and Dynamical Regimes of the Northern Hemisphere Extratropical Atmosphere during Sudden Stratospheric Warming in Winter 2012–2013, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 1, pp. 12–29, DOI: 10.1134/S0001433814060176.
  2. Medvedeva I. V., Ratovsky K. G., Comparative Analysis of Atmospheric and Ionospheric Variability by Measurements of Temperature in the Mesopause Region and Peak Electron Density NmF2, Geomagnetism and Aeronomy, 2017, Vol. 57, No. 2, pp. 217–228.
  3. Perminov V. I., Semenov A. I., Shefov N. N., On rotational temperature of the hydroxyl emission, Geomagnetism and Aeronomy, 2007, Vol. 47, No. 6, pp. 756-763.
  4. Perminov V., Semenov A. I., Medvedeva I. V., Pertsev N. N., Temperature Variations in the Mesopause Region According to the Hydroxyl-Emission Observations at Midlatitudes, Geomagnetism and Aeronomy, 2014, Vol. 54, No. 2, pp. 230–240, DOI: 10.1134/S0016793214020157.
  5. Khomich V. Yu., Semenov A. I., Shefov N. N., Airglow as an Indicator of Upper Atmospheric Structure and Dynamics, Berlin, Heidelberg: Springer-Verlag, 2008, 749 p.
  6. Chen G., Wu C., Zhang S., Ning B., Huang X., Zhong D., Qi H., Wang J., Huang L., Midlatitude ionospheric responses to the 2013 SSW under high solar activity, J. Geophys. Res. Space Physics, 2016, Vol. 121, pp. 790–803, DOI: 10.1002/2015JA021980.
  7. Goncharenko L., Zhang S.-R., Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude, Geophys. Res. Lett., 2008, Vol. 35, L21103. DOI: 10.1029/2008GL035684.
  8. Hoffman P., Singer W., Keuer D., Hocking W. K., Kunze M., Murayama Y., Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events, J. Atmos. Solar-Terrestr. Phys., 2007, Vol. 69, pp. 2355–2366, DOI: 10.1016/j.jastp.2007.06.010.
  9. Labitzke K., Interannual variability of the winter stratosphere in the Northern hemisphere, Monthly Weather Review, 1977, Vol. 105, pp. 762–770.
  10. Labitzke K., Naujokat B., The lower Arctic stratosphere in winter since 1952, SPARC Newsletter, 2000, Vol. 15, pp. 11–14.
  11. Medvedeva I., Ratovsky K., Studying atmospheric and ionospheric variabilities from long-term spectrometric and radio sounding measurements, J. Geophys. Res. Space Physics, 2015, Vol. 120, Issue 6, pp. 5151–5159, DOI: 10.1002/2015JA021289.
  12. Medvedeva I. V., Semenov A. I., Chernigovskaya M. A., Perminov V. I., Studying Manifestations of 2008–2011 Sudden Stratospheric Warmings in East-Siberia and European Russia, Geophysica, 2012, Vol. 48, No. 1–2, pp. 91–103.
  13. Medvedeva I., Medvedev A., Ratovsky K., Shcherbakov A., Tolstikov M., Comprehensive study of disturbances of the neutral atmosphere and ionosphere parameters over Eastern Siberia during the 2013 January major sudden stratospheric warming, Adv. Space Res., 2015, Vol. 56, No. 9. pp. 1877–1885, URL:
  14. Oinats A. V., Kotovich G. V., Ratovsky K. G., Comparison of the main ionospheric characteristics measured by the Digisonde at Irkutsk in 2003 with IRI 2001 model data, Adv. Space Res., 2006, Vol. 37, No. 5, pp. 1018–1022, DOI: 10.1016/j.asr.2005.12.011.
  15. Pedatella N. M., Maute A., Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings, J. Geophys. Res. Space Physics, 2015, Vol. 120, No. 10, pp. 10740–10753, DOI: 10.1002/2015JA021986.
  16. Perminov V. I., Semenov A. I., Medvedeva I. V., Zheleznov Yu. A., Variability of mesopause temperature from the hydroxyl airglow observations over midlatitudinal sites, Zvenigorod and Tory, Russia, Adv. Space Res., 2014, Vol. 54, pp. 2511–2517, URL: http://dx.
  17. Reinisch B. W., Haines D. M., Bibl K., Galkin I., Huang X., Kitrosser D. F., Sales G. S., Scaliet J. L., Ionospheric sounding in support of over-the-horizon radar, Radio Sci., 1977, Vol. 32, No. 4, pp. 1681–1694, DOI: 10.1029/97RS00841.
  18. Schwartz M. J., Lambert A., Manney G. L., Read W. G., Livesey N. J., Froidevaux L., Ao C. O., Bernath P. F., Boone C. D., Cofield R. E., Daffer W. H., Drouin B. J., Fetzer E. J., Fuller R. A., Jarnot R. F., Jiang J. H., Jiang Y. B., Knosp B. W., Krüger K., Li J.-L. F., Mlynczak M. G., Pawson S. J., Russell III M., Santee M. L., Snyder W. V., Stek P. C., Thurstans R. P., Tompkins A. M., Wagner P. A., Walker K. A., Waters J. W., Wu D. L., Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements, J. Geophys. Res., 2008, Vol. 113(D15), D15S11, DOI: 10.1029/2007JD008783.
  19. Shepherd M. G., Cho Y.-M., Shepherd G. G., Ward W., Drummond J. R., Mesospheric temperature and atomic oxygen response during the January 2009 major stratospheric warming, J. Geophys. Res., 2010, Vol. 115, A07318, DOI: 10.1029/2009JA015172.
  20. Shpynev B., Kurkin V., Ratovsky K., Chernigovskaya M., Belinskaya A., Grigorieva S., Stepanov A., Bychkov V., Pancheva D., Mukhtarov P., High-midlatitude ionosphere response to major stratospheric warming, Earth, Planets and Space, 2015, Vol. 67. No. 18, DOI: 10.1186/s40623-015-0187-1.
  21. Siskind D. E., Coy L., Espy P., Observations of stratospheric warmings and mesospheric coolings by the TIMED SABER instrument, Geophys. Res. Lett., 2005, Vol. 32, L09804, DOI: 10.1029/2005GL022399.
  22. Tolstikov M. V., Medvedev A. V., Ratovsky K. G., Medvedeva I. V., Studies of dynamic characteristics of atmospheric planetary waves during stratospheric warmings 2006–2013, IEEE Xplore, from: General Assembly and Scientific Symposium URSI, 2014, URL:
  23. Walterscheid R. L., Sivjee G. G., Roble R. G., Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80N), Geophys. Res. Lett., 2000, Vol. 27, No. 18, pp. 2897–2900, DOI:10.1029/2000GL003768.