ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 265-279

Retrieval of cloud microphysical properties from satellite observations

E.V. Volkova 1 
1 State Research Center of Space Hydrometeorology “Planeta”, Moscow, Russia
Accepted: 30.07.2018
DOI: 10.21046/2070-7401-2018-15-4-265-279
Information on microphysical state of cloud cover (cloud water content, total cloud water content, cloud water phase, cloud optical depth, cloud optical thickness, effective cloud droplet size, etc.) is very important for modeling and investigation of climatic and weather changes as cloud optical and physical properties greatly influence the Earth’s radiation budget and climate. Accurate estimation of cloud microphysical properties (CMPP) is an absolute necessity in any climate model. By now, a lot of various algorithms and retrieval techniques for computing CMPP have been developed. Most of them utilize satellite radiances at wavelengths in the non-absorbing visible and the moderately absorbing solar infrared parts of the spectrum. Since backscattered solar radiation is used, the algorithms are only applicable during daylight and over snowless territories. Moreover, the accuracy of estimations strongly depends on the uncertainties produced by various assumptions about the atmosphere and the cloud embedded in it, for example, the assumption of plane-parallel and homogeneous cloud layers. Three versions of the multispectral threshold technique (MTT) were proposed and developed by the author at “Planeta” for automatic classification of satellite data from polar-orbiting (AVHRR/NOAA, MSU MR/“Meteor-M” No. 2) and geostationary (SEVIRI/Meteosat-8, -9, -10) imagers for the purpose of deriving CMPP (among other cloud cover parameters) day-and-night all year round above any ground surface. The MTT employs brightness temperature and daytime albedo along with the cloud cover parameters retrieved at the previous steps of the technique. The MTT was tested for AVHRR and MSU-MR data over the European territory of Russia and neighboring countries, and for SEVIRI data over the whole field of the imager’s view. The validation showed a good agreement of MTT results with synoptic situations and the climatic information (concerning certain cloud types). The output products were also indirectly compared with ground-based conventional meteorological observations. The results of the validation proved MTT quite competitive with retrieval techniques implemented in foreign satellite centers and meeting user demands for the accuracy of CMPP. The paper presents a review and qualitative comparison of various approaches to CMPP retrieval from satellite data.
Keywords: AVHRR/NOAA, MSU-MR/Meteor, SEVIRI/Meteosat, cloud water content, total cloud water content, cloud water phase, cloud optical depth, cloud optical thickness, effective cloud droplet size
Full text

References:

  1. Volkova E. V., Otsenki parametrov oblachnogo pokrova, osadkov i opasnykh yavlenii pogody po dannym radiometra AVHRR s MISZ serii NOAA kruglosutochno v avtomaticheskom rezhime (Day and night automatic estimation of cloud cover parameters, precipitation and weather hazards using AVHRR/NOAA day), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2013, Vol. 10, No. 3, pp. 66–74.
  2. Volkova E. V., Otsenki parametrov oblachnogo pokrova i osadkov po dannym radiometra MSU-MR c polyarno-orbital’nogo meteosputnika “Meteor-M” № 2 dlya Evropeiskoi territorii Rossii (Detection and assessment of cloud cover and precipitation parameters using data from the MSU-MR of the polar-orbiting Meteor-M No. 2 for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 300–320.
  3. Volkova E. V., Uspenskii A. B., Otsenki parametrov oblachnogo pokrova po dannym geostatsionarnogo MISZ Meteosat-9 kruglosutochno v avtomaticheskom rezhime (Day and night automatic estimation of cloud cover parameters using Meteosat-9 data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2010, Vol. 7, No. 3, pp. 16–22.
  4. Volkova E. V., Uspenskii A. B., Otsenki parametrov oblachnogo pokrova i osadkov po dannym skaniruyushchikh radiometrov polyarno-orbital’nykh i geostatsionarnykh meteosputnikov (Estimation of cloud cover parameters and precipitation utilizing polar-orbiting and geostationary satellite data), Issledovaniya Zemli iz kosmosa, 2015, No. 5, pp. 30–43.
  5. Kalinin N. A., Smirnova A. A., Metodika raschyota vodnosti i vodozapasa kuchevo-dozhdevoi oblachnosti (A method of estimation of cloud water and cloud water content in Cumulonimbus), Vestnik Udmurtskogo universiteta. Biologiya. Nauki o Zemle, 2008, No. 1, pp. 59–72.
  6. Mazin I. P., Khrgian A. H., Oblaka i oblachnaya atmosfera (Clouds and cloud atmosphere), Leningrad: Gidrometizdat, 1989, 647 p.
  7. Muchnik V. M., Fizika grozy (Thunderstorm physics), Leningrad: Gidrometizdat, 1974, 352 p.
  8. Khromov S. P., Mamontova L. I., Meteorologicheskii slovar’ (Meteorological dictionary), Leningrad: Gidrometizdat, 1974, 568 p.
  9. Chukin V. V., Nguyen T. T., Opredelenie fazovogo sostoyaniya oblakov po dannym pribora SEVIRI v vidimom i blizhnem IK diapazone dlin voln (Detection of phase state of clouds with the help of the SEVIRI device in the visible and near infrared wavelength range), Mezhdunarodnyi nauchno-issledovatelskii zhurnal, 2017, No. 2-2 (56), P. 59–62, DOI: 10.23670/IRJ.2017.56.002.
  10. Shmeter S. M., Fizika konvektivnykh oblakov (Physics of convective clouds), Leningrad: Gidrometizdat, 1972, 232 p.
  11. Barnard J. C., Long C. N., A simple empirical equation to calculate cloud optical thickness using shortwave broadband measurements, J. Applied Meteorology, 2004, Vol. 43, No. 7, pp. 1057–1066.
  12. Chen R., Wood R., Li Z., Ferraro R., Chang F.-L., Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing day, J. Geophysical Research, 2008, Vol. 113, D00A02, 8 p., DOI: 10.1029/2007JD009596.
  13. Chiu J. C., Marshak A., Huang C.-H., Carnai T., Hogan R. J., Giles D. M., Holben B. N., O’Connor E. J., Knyazikhin Y., Wiscombe W. J., Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 10313–10329, DOI: 10.5194/acp-12-10313-2012.
  14. Deneke H., Johnston S., Reuter M., Roebeling R., Tetslaff A., Thomas W., Wolters E., SAF CM scientific report. Validation of CM-SAF cloud products derived from MSG/SEVIRI day, Version 300 products: CFC, CTY, CTH/CTP/CTT, COT, CWP, CPH, 2007, Issue 1.2, SAF/CM/DWD/KNMI/SMHI/SR/CLOUDS-ORR/3, 105 p.
  15. EUMETSAT. OCA product verification, Doc. No. EUM/TSS/DOC/13/706263, Issue v1, May 23, 2013, 42 p.
  16. Heymsfield A. J., Matrosov S., Baum B., Ice water path ― optical depth relationship for Cirrus and deep stratiform ice cloud layers, J. Applied Meteorology, 2003, Vol. 42, No. 10, pp. 1369–1390.
  17. Hollmann R., Annual product quality assessment report 2012, 2013, Issue 1.1, SAF/CM/DWD/AQA/OR2013, 71 p.
  18. Huang J., Minnis P., Lin B., Yi Y., Fan T.-F., Sun-Mack S., Ayers J. K., Determination of ice-water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements, Geophysical Research Letters., 2006, Vol. 33, L21801, 5 p., DOI: 10.1029/2006GL027038.
  19. Ipe A., Bertrand C., Clerbaux N., Dewitte S., Gonzalez L., Validation and homogenization of cloud optical depth and cloud fraction retrievals for GERB/SEVIRI scene identification using Meteosat-7 day, Atmospheric Research, 2004, Vol. 72, pp. 17–37, DOI: 10.1016/j.atmosres.2004.03.010.
  20. Kniffka A., Lockhoff M., Meirink J. F., Stengel M., CM SAF: validation report. SEVIRI cloud products, 2013, Issue 1.2, SAF/CM/DWD/VAL/SEV/CLD, Edition 1, 88 p. DOI: 10.5676/EUM_SAF_CM/CMA_SEVIRI/V001.
  21. Kniffka A., Meirink J. F., Stengel M., CM SAF: Product User Manual. SEVIRI dataset cloud products, 2013, Issue 1.2, SAF/CV/DWD/PUM/SEV/CLD, Edition 1, 45 p. DOI: 10.5676/EUMETSAT_SAF_CM/CLAAS/V001.
  22. Kobayashi T., Significant differences in the cloud effective radius between non-precipitating and precipitating clouds, Geophysical Research Lett., 2007, Vol. 34, L15811, 4 p., DOI: 10.1029/2007GL029606.
  23. Liu G., Shao H., Coakley J. A., Curry J. A., Haggerty J. A., Tschudi M. A., Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX: implication to aerosols’ indirect radiative effect, J. Geophysical Research, 2003, Vol. 108, No. D1, 4006, 10 p., DOI: 10.1029/2001JD001395.
  24. Marchand R., Ackerman T., Smyth M., Rossow W. B., A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS, J. Geophysical Research, 2010, Vol. 115, D16206, DOI: 10.1029/2009JD013422.
  25. Martins J. V., Marshak A., Remer L. A., Rosenfeld D., Kaufman Y. J., Fernandez-Borda R., Koren I., Correia A. L., Zubko V., Artaxo P., Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmospheric Chemistry and Physics, 2011, Vol. 11, pp. 9485–9501, DOI: 10.5/94/acp-11-9485-2011.
  26. Meirink J. F., van Zadelhoff G.-J., CM SAF: Algorithm theoretical basis document. SEVIRI cloud physical products. CLAAS Edition 2, 2016, Issue 2.2, SAF/CM/KNMI/ATBD/SEVIRI/CPP, 35 p., DOI: 10.5676/EUM_SAF_CM/CLAAS/V002.
  27. Meirink J. F., Roebeling R., Wolters E., Deneke H., CM SAF: algorithm theoretical basis document. Cloud physical products: AVHRR/SEVIRI, SAF/CM/KNMI/ATBD/CPP, Issue 1.1, June 06, 2010, 24 p.
  28. Mitchell D. L., Lawson R. P., Baker B., Understanding effective diameter and its application to terrestrial radiation in ice clouds, Atmospheric Chemistry and Physics, 2011, Vol. 11, pp. 3417–3429, DOI: 10.5194/acp-11-3417-2011.
  29. Pandey P., De Ridder K., Gillotay D., van Lipsig N. P. M., Estimating cloud optical thickness and associated UV irradiance from SEVIRI by implementing a semi-analytical cloud retrieval algorithm, Atmospheric Chemistry and Physics, 2012, Vol. 12, pp. 7961–7975, DOI: 10.5194/acp-12-7961-2012.
  30. Parol F., Descloitres J., Fouquart Y., Cloud Optical Thickness and albedo retrievals from bidirectional reflectance measurements of Polder instruments during ACE-2 (manuscript), 2013, 22 p., URL: https://hal.archives-ouvertes.fr/nal-00811540.
  31. Pincus R., Szczodrak M., Gu J., Austin P., Uncertainty in cloud optical depth estimates made from satellite radiance measurements, J. Cimate, 1995, Vol. 5, pp. 1453–1462.
  32. Reid J. S., Hobbs P. V., Rangno A. L., Hegg D. A., Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke, J. Geophysical Research, 1999. V. 104. No. D6. pp. 6145–6153.
  33. SAF CM. Products validation report summary, SAF/CM/DWD/PVRS/1, 2005, Issue 2.0, 41 p.
  34. Sengupta M., Clothiaux E. E., Ackerman T. P., Kato S., Min Q., Importance of accurate liquid water path for estimation of solar radiation in warm boundary layer clouds: an observational study, J. Climate, 2003, Vol. 16, pp. 2997–3009.
  35. Stengel V., Karlsson K. G., Meirink J. F., CM SAF: Product user manual. Clouds, SAF/CM/DWD/PUM/CLOUDS, Ver. 1.8, February 22, 2015, 99 p.
  36. Yoo H., Li Z., Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products, Climate Dynamics, 2012, Vol. 39, Issue 12, pp. 2769–2787, DOI: 10.1007/s00382-012-1430-0.