ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 225-235

Retrieval of integrated water vapor content of the atmosphere over the ocean using MTVZA-GY (Meteor-M No. 2) data

E.V. Pashinov 1 
1 Space Research Institute RAS, Moscow, Russia
Accepted: 10.07.2018
DOI: 10.21046/2070-7401-2018-15-4-225-235
Availability of vertical and horizontal polarization channels at frequencies of 23.8 and 18.7 GHz in the MTVZA-GY instrument allows applying polarization difference technique to retrieve the integrated water vapor content of the atmosphere. Similar techniques have been already developed for AMSR-E instrument. The paper proposes an adaptation of such a technique described in (Deeter, 2007) for MTVZA-GY data. It has required additional investigation and deriving new coefficients for the regression relation. A good correlation between the results of the calculations by the obtained regression relation and weather balloon data has been demonstrated. Also, an analysis showed a good correlation of the calculations based on MTVA-GY data and the GMI product provided by Remote Sensing Systems. Evaluation of the results of integrated water vapor content retrieval using the developed technique indicates the possibility of measurement with a relative error of less than 10 % in the range of 10 to 60 mm.
Keywords: remote sensing, integrated water vapor content, MTVZA-GY, microwave sounding, retrieving
Full text

References:

  1. Boldirev V. V., Grobets N. N., Ilgasov P. A., Nikitin O. V., Pantsov V. U., Prohorov U. N., Strelnikov N. I., Streltsov A. M., Cherniy I. V., Cherniavskiy G. M., Yakovlev V. V., Sputnikovyi mikrovolnovyi skaner/zondirovshchik MTVZA-GY (Satellite microwave imager/sounder MTVZA-GY), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, Issue 5, No. 1, pp. 243–248.
  2. Ermakov D. M., Sharkov E. A., Chernushich A. P., Otsenka troposfernykh advektivnykh potokov skrytogo tepla nad okeanom pri animatsionnom analize radioteplovykh dannykh sputnikovogo monitoringa (Evaluation of troposphere edvective latent heat fluxes over oceans by animated analysis of satellite radiothermal remote data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, No. 4, pp. 32–38.
  3. Kutuza B. G., Danilichev M. V., Yakovlev O. I., Sputnikovyi monitoring Zemli: Mikrovolnovaya radiometriya atmosfery i poverkhnosti (Satellite monitoring of the Earth: Microwave radiometry of the atmosphere and surface), Moscow: LENAND, 2016, 336 p.
  4. Sharkov E. A., Shramkov Y. N. Pokrovskaya I. V., Povyshennoe soderzhanie vodyanogo para v atmosphere tropicheskikh shirot kak neobkhodimoe uslovie genezisa tropicheskikh tsiklonov (The increased content of water vapor in the atmosphere of tropical latitudes as a necessary condition for the genesis of tropical cyclones), Issledovanie Zemli iz Kosmosa, 2012, No. 2, pp. 73–82.
  5. Deeter M. N., A new satellite retrieval method for precipitable water vapor over land and ocean, Geophysical Research Letters, 2007, Vol. 34, L02815.
  6. Deeter M. N., Vivekanandan J., New dual-frequency microwave technique for retrieving liquid water path over land, J. Geophysical Research, 2006, Vol. 111, D15209.
  7. Draper D. W., Newell D., Wentz F. J., Krimchansky S., Skofronick-Jackson G. M., The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument overview and early on-orbit performance, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, Issue 7, pp. 3452–3462.
  8. Greenwald T. J., Combs C. L., Jones A. S., Randel D. L., Haar T. V., Further developments in estimating cloud liquid water over land using microwave and infrared satellite measurements, J. Applied Meteorology, 1997, Vol. 36, pp. 389–405.
  9. Kawanishi T., Sezai T., Ito Y., The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies, IEEE Trans. Geosciences Remote Sensing, 2003, Vol. 41, pp. 184–194.
  10. Kämpfer N., Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, ISSI Scientific Report Series 10. New York: Springer-Verlag, 2013, 328 p.
  11. Trenberth K. E., Caron J. M., Estimates of Meridional Atmo-sphere and Ocean Heat Transports, J. Climate, 2001, Vol. 14, No. 16, pp. 3433–3443.