ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 4, pp. 236-248

Comparative analysis of the North Atlantic and North Pacific extratropical cyclone characteristics retrieved from ERA-Interim reanalysis and AMSR-E data

P.V. Vasilyeva 1 , E.V. Zabolotskikh 1 , B. Chapron 2, 1 
1 Russian State Hydrometeorological University, St. Petersburg, Russia
2 Institut Français de Recherche pour l’Exploitation de la Mer, Plouzané, France
Accepted: 11.04.2018
DOI: 10.21046/2070-7401-2018-15-4-236-248
The study is aimed at the investigation of the extratropical cyclone (ETC) characteristics over the northern parts of the Atlantic and Pacific Oceans for a time period of two years (from June 2002 to May 2004), based on ERA-Interim re-analysis data and geophysical parameter fields retrieved from satellite passive microwave radiometer AMSR-E (Advanced Microwave Scanning Radiometer ― Earth Observing System) on the AQUA satellite. The ETCs were identified from ERA-Interim sea surface wind speed (SWS) and sea level pressure data. Maximum SWS values were determined for each ETC from AMSR-E retrieved SWS fields and compared with the maximum SWS from the reanalysis data. The SWS was obtained from the AMSR-E data by means of the application of the algorithm, extensively validated for high winds (SWS > 15 m/s). Special analysis is fulfilled for the hurricane force ETCs (SWS > 32.7 m/s). The results are compared with the results of the previous studies, based on satellite scatterometer data. The main features of the spatial and seasonal distribution of ETC characteristics over the North Atlantic and North Pacific for two time periods are determined. It is established that the ERA-Interim re-analysis data underestimates the maximum wind speeds in most hurricane-force ETCs as compared to the AMSR-E SWS data.
Keywords: Extratropical cyclones, sea surface wind speed, hurricane force cyclones, ERA-Interim, satellite passive microwave radiometer, AMSR-E
Full text


  1. Rudeva I. A., Zhiznennyi tsikl atmosfernykh vnetropicheskikh tsiklonov Severnogo polushariya i ego svyaz’ s protsessami vzaimodeistviya okeana i atmosfery (The life cycle of atmospheric extratropical cyclones in the Northern Hemisphere and its relationship with the processes of interaction between the ocean and the atmosphere), Izvestiya RAN. Fizika atmosfery i okeana, 2008, Vol. 44, pp. 1–7.
  2. Businger S., Yildiz S., Robinson T. E., The Impact of Hurricane Force Wind Fields on the North Pacific Ocean Environment, Weather and Forecasting, 2015, Vol. 30, No. 3, pp. 742–753.
  3. Dacre H. F., Hawcroft M. K., Stringer M. A., Hodges K. I., An extratropical cyclone atlas: A tool for illustrating cyclone structure and evolution characteristics, Bull. American Meteorological Society, 2012, Vol. 93, No. 10, pp. 1497–1502.
  4. Dickinson S., Brown R. A., A study of near-surface winds in marine cyclones using multiple satellite sensors, J. Applied Meteorology and Climatology, 1996, Vol. 35, No. 6, pp. 769–781.
  5. Geng Q., Sugi M., Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols ― Study with a high-resolution AGCM, J. Climate, 2003, Vol. 16, No. 13, pp. 2262–2274.
  6. Gulev S. K., Zolina O., Grigoriev S., Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data, Climate Dynamics, 2001, Vol. 17, pp. 795–809.
  7. Jelenak Z., Chang P. S., NOAA operational satellite ocean surface vector winds ― QuikSCAT follow-on mission: User impact study report, 2008, 90 p., available at: nal.pdf.
  8. Jelenak Z., Ahmad K., Sienkiewicz J., Chang P. S., A statistical study of wind field distribution within extra-tropical cyclones in North Pacific ocean from 7-years of QuikSCAT wind data, IEEE Intern. Geoscience and Remote Sensing Symp., Cape Town, South Africa, July 2009, Vol. 1, pp. I-104–I-107.
  9. Jelenak Z., Patoux J., Chang P., Sienkiewicz J., Hurricane force extratropical cyclones trends from ECMWF and Ocean Prediction Center Analysis, Intern. IOWVST Meeting, 2012, Utrecht, Netherlands.
  10. Jones S. C., Harr P. A., Abraham J., Bosart L. F., Bowyer P. J., Evans J. L., Hanley D. E., Hanstrum B. N., Hart R. E., Lalaurette F., Sinclair M. R., Smith R. K., Thorncroft C., The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions, Weather and Forecasting, 2003, Vol. 18, No. 6, pp. 1052–1092.
  11. Jzyk P., QuikSCAT analysis of hurricane force extratropical cyclones in the Pacific Ocean, Senior Honors Projects, 2010, Paper 177, available at:
  12. Li M., Liu J., Wang Z., Wang H., Zhang Z., Zhang L., Yang Q., Assessment of Sea Surface Wind from NWP Reanalyses and Satellites in the Southern Ocean, J. Atmospheric and Oceanic Technology, 2013, Vol. 30, No. 8, pp. 1842–1853.
  13. Sienkiewicz J. M., Ahmad K., McFadden G. M., Hurricane force extratropical cyclones, Scatterometer and Climate Meeting, Arlington, VA, August 19–21, 2009.
  14. Stroeve J. C., Serreze M. C., Barrett A., Kindig D. N., Attribution of recent changes in autumn cyclone associated precipitation in the Arctic, Tellus A: Dynamic Meteorology and Oceanography, 2011, Vol. 63, No. 4, pp. 653–663.
  15. Von Ahn J., Sienkiewicz J., McFadden G., Hurricane Force Extratropical Cyclones Observed Using QuikSCAT Near Real Time Winds, Mariners Weather Log, 2005, Vol. 49, No. 1, available at:
  16. Willis M., Garces M., Hetzer C., Businger S., Infrasonic observations of open ocean swells in the Pacific: Deciphering the song of the sea, Geophysical Research Letters, 2004, Vol. 31, L19303.
  17. Zabolotskikh E., Mitnik L., Chapron B., GCOM-W1 AMSR2 and MetOp-A ASCAT wind speeds for the extratropical cyclones over the North Atlantic, Remote Sensing of Environment, 2014, Vol. 147, pp. 89–98.
  18. Zabolotskikh E., Mitnik L., Reul N., Chapron B., New Possibilities for Geophysical Parameter Retrievals Opened by GCOM-W1 AMSR2, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2015, Vol. 8, No. 9, pp. 4248–4261.