ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 263-272

Selecting the key control parameters for the ionospheric total electron content nowcasting

A.V. Zhukov 1 , D.N. Sidorov 1, 2, 3 , A.A. Mylnikova 1 , Yu.V. Yasyukevich 1, 3 
1 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia
2 Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia
3 Irkutsk State University, Irkutsk, Russia
Accepted: 21.05.2018
DOI: 10.21046/2070-7401-2018-15-3-263-272
Nowcasting the dynamics of ionospheric parameters is an actual and at the same time rather complicated task. One of the main issues is the selection of control parameters for constructing accurate predictive model (feature selection). The approach is based on the machine learning technology for this problem solution. The vertical absolute total electron content (TEC) with a time resolution of 30 minutes is used as experimental data. The data were obtained using phase and group measurements of TEC at the mid-latitude IRKJ station (52 N, 104 E) for 2014. The results showed that the key control parameters for TEC nowcasting model are the current value of the TEC, the estimated TEC derivative, the local time, the current values of F10.7 and the SYM/H, and the exponentially weighted moving averaged TEC values with periods of 12 and 24 hours and SYM/H with periods of 24 and 96 hours, as well as previously received data with some lag, such as the vertical TEC with 12 hours lag, F10.7 with 3 and 15 days lags. The proposed empirical nowcasting models are based on parameters selected by recursive selection of characteristics with determination of their significance using random forest and support vectors methods. Using these key parameters, the linear regression model allows obtaining an estimate on the interval of 4–7 hours with RMS ~4.5 TECU. The machine learning methods such as random forest, support vector method and gradient boosting allow to reduce RMS to 3–3.5 TECU.
Keywords: nowcasting, absolute total electron content, machine learning, random forest, support vector machine, gradient boosting
Full text

References:

  1. Danilkin N. P., Zhbankov G. A., Tasenko S. V., Vosstanovlenie trekhmernogo polya plotnosti elektronov po rezul’tatam model’nogo eksperimenta s uchastiem bortovogo ionozonda i dvukh nazemnykh ionozondov (Reconstruction of a three-dimensional electron density field based on the results of a model experiment involving an onboard ionosonde and two ground ionosondes), Geliogeofizicheskie issledovaniya, 2014, No. 7, pp. 43–55.
  2. Zhukov A. V., Sidorov D. N., Modifikatsiya algoritma sluchainogo lesa dlya klassifikatsii nestatsionarnykh potokovykh dannykh (Modification of the random forest algorithm for the classification of non-stationary streaming data), Vestnik YuUrGU. Ser. Matematicheskoe modelirovanie i programmirovanie, 2016, Vol. 9, No. 4, pp. 86–95, DOI: 10.14529/mmp160408.
  3. Kurkin V. I., Polekh N. M., Chistyakova L. V., Operativnyi prognoz MPCh pri naklonnom zondirovanii ionosfery (Operational forecast of MUF for oblique ionospheric sounding), Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa, Izd. SO RAN, 1997, Issue 105, pp. 168–174.
  4. Smirnov V. M., Smirnova E. V., Modul’ ionosfernogo obespecheniya na baze sputnikovykh sistem GPS/GLONASS (Ionospheric support module based on GPS/GLONASS satellite systems), Zhurnal radioelektroniki, 2010, No. 6.
  5. Yasyukevich Yu. V., Ovodenko V. B., Myl’nikova A. A., Zhivet’ev I. V., Vesnin A. M., Edemskii I. K., Kotova D. S., Metody kompensatsii ionosfernoi sostavlyayushchei oshibki radiotekhnicheskikh sistem s primeneniem dannykh polnogo elektronnogo soderzhaniya GPS/GLONASS (GPS/GLONASS total electron content based methods for ionospheric error compensation for the radio communication systems), Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy, 2017, No. 2 (34), pp. 19–31, DOI: 10.15350/2306-2819.2017.2.19.
  6. Afraimovich E. L., Astafyeva E. I., Demyanov V. V., Edemskiy I. K., Gavrilyuk N. S., Ishin A. B., Kosogorov E. A., Leonovich L. A., Lesyuta O. S., Palamartchouk K. S., Perevalova N. P., Polyakova A. S., Smolkov G. Y., Voeykov S. V., Yasyukevich Yu. V., Zhivetiev I. V., Review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena, J. Space Weather and Space Climate, 2013, Vol. 3, A27, DOI: 10.1051/swsc/2013049.
  7. Belehaki A., Tsagouri I., Kutiev I., Marinov P., Zolesi B., Pietrella M., Themelis K., Elias P., Tziotziou K., The European Ionosonde Service: nowcasting and forecasting ionospheric conditions over Europe for the ESA Space Situational Awareness services, J. Space Weather Space Climate, 2015, Vol. 5, A25, DOI: 10.1051/swsc/2015026.
  8. Breiman L., Random forests, Machine learning, 2001, Vol. 45, No. 1, pp. 5–32, DOI: 10.1023/A:101093340.
  9. Chen Y. W., Lin C. J., Combining SVMs with various feature selection strategies, In: Feature Extraction. Studies in Fuzziness and Soft Computing, Guyon I., Nikravesh M., Gunn S., Zadeh L. A. (eds.), Vol. 207, Berlin: Springer, 2006, DOI: 10.1007/978-3-540-35488-8_13.
  10. Dáz-Uriarte R., De Andres S. A., Gene selection and classification of microarray data using random forest, BMC bioinformatics, 2006, Vol. 7, No. 1, DOI: 3.10.1186/1471-2105-7-3.
  11. Dow J. M., Neilan R. E., Rizos C., The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodes., 2009, Vol. 83, No. 3–4, pp. 191–198, DOI: 10.1007/s00190-0080300-3.
  12. El-naggar A. M., Artificial neural network as a model for ionospheric TEC map to serve the single frequency receiver, Alexandria Engineering J., 2013, Vol. 52, No. 3, pp. 425–432, DOI: 10.1016/j.aej.2013.05.007.
  13. Forbes J. M., Palo S. E., Zhang X., Variability of the ionosphere, J. Atmospheric and Solar-Terrestrial Physics, 2000, Vol. 62, No. 8, pp. 685–693.
  14. García-Rigo A., Monte E., Hernández-Pajares M., Juan J. M., Sanz J., Aragón-Angel A., Salazar D., Global prediction of the vertical total electron content of the ionosphere based on GPS data, Radio Science, 2011, Vol. 46, No. 6, RS0D25, DOI: 10.1029/2010RS004643.
  15. Granitto P. M., Furlanello C., Biasioli F., Gasperi F., Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products, Chemometrics and intelligent laboratory systems, 2006, Vol. 83, No. 2, pp. 83–90, DOI: 10.1016/j.chemolab.2006.01.007.
  16. Gurtner W., Estey L., RINEX: The Receiver Independent Exchange Format Version 2.11. Bern: Astronomical Institute, University of Bern, 2007, hdl:10013/epic.43875.
  17. Habarulema J. B., McKinnell L.-A., Opperman B., Regional GPS TEC modeling; Attempted spatial and temporal extrapolation of TEC using neural networks, J. Geophys. Res., 2011, Vol. 116, A04314, DOI: 10.1029/2010JA016269.
  18. Hajra R., Chakraborty S. K., Tsurutani B. T., DasGupta A., Echer E., Brum C. G. M., Gonzalez W. D., Sobral J. H. A., An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA), J. Space Weather Space Climate, 2016, Vol. 6. A29, DOI: 10.1051/swsc/2016023.
  19. Hernández-Pajares M., Juan J. M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S. C., Krankowski A., The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod., 2009, Vol. 83, No. 3–4, pp. 263–275. DOI: 10.1007/s00190-008-0266-1.
  20. Huang Z., Yuan H., Ionospheric single-station TEC short-term forecast using RBF neural network, Radio Sci., 2014, Vol. 49, pp. 283–292, DOI: 10.1002/ 2013RS005247.
  21. Jakowski N., Wehrenpfennig A., Heise S., Kutiev I., Space weather effects on transionospheric radio wave propagation on 6 April 2000, Acta Geod. Geophys. Hung., 2002, Vol. 37, No. 2–3, pp. 213–220.
  22. Kunitsyn V. E., Padokhin A. M., Kurbatov G. A., Yasyukevich Y. V., Morozov Y. V., Ionospheric TEC estimation with the signals of various geostationary navigational satellites, GPS Solutions, 2016, Vol. 20, No. 4, pp. 877–884, DOI: 10.1007/s10291-015-0500-2.
  23. Kurbatsky V. G., Sidorov D. N., Spiryaev V. A., Tomin N. V., The hybrid model based on Hilbert-Huang transform and neural networks for forecasting of short-term operation conditions of power system, The Power of Technology for a Sustainable Society, Proc. IEEE PES Trondheim PowerTech 2011, 2011, pp. 1–7, DOI: 10.1109/PTC.2011.6019155.
  24. Li Y., Wen Z., Cao Y., Tan Y., Sidorov D., Panasetsky D., A combined forecasting approach with model self-adjustment for renewable generations and energy loads in smart community, Energy, 2017, Vol. 129, pp. 216–227.
  25. Nesterov I. A., Andreeva E. S., Padokhin A. M., Tumanova Yu. S., Nazarenko M. O., Ionospheric perturbation indices based on the low- and high-orbiting satellite radio tomography data, GPS Solutions, 2017, Vol. 21, No. 4, pp. 1679–1694, DOI: 10.1007/s10291-017-0646-1.
  26. Saeys Y., Abeel T., Van de Peer Y., Robust feature selection using ensemble feature selection techniques, Proc. European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2008), W. Daelemans, B. Goethals, K. Morik (eds.), Springer-Verlag, Berlin, Heidelberg, 2008, pp. 313–325, DOI: 10.1007/978-3-540-87481-2_21.
  27. Schaer S., Beutler G., Rothacher M., Mapping and predicting the ionosphere, Proc. IGS AC Workshop. Darmstadt, Germany. February 9–11, 1998, 1998, pp. 307–320.
  28. Stamper R., Belehaki A., Buresová D., Cander L. R., Kutiev I., Pietrella M., Stanislawska I., Stankov S., Tsagouri I., Tulunay Y. K., Zolesi B., Nowcasting, forecasting and warning for ionospheric propagation: tools and methods, Annals of geophysics, 2004, Vol. 47, No. 2–3, pp. 957–983.
  29. Tulunay E., Senalp E. T., Cander L. R., Tulunay Y. K., Bilge A. H., Mizrahi E., Kouris S. S., Jakowski N., Development of algorithms and software for forecasting, nowcasting and variability of TEC, Annals of geophysics, 2004, Vol. 47 sup., No. 2–3, pp. 1201–1214.
  30. Yasyukevich Yu. V., Mylnikova A. A., Polyakova A. S., Estimating the total electron content absolute value from the GPS/GLONASS data, Results in Physics, 2015, Vol. 5, pp. 32–33, DOI: 10.1016/j.rinp.2014.12.006.
  31. Yasyukevich Y. V., Mylnikova A. A., Kunitsyn V. E., Padokhin A. M., Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere, Geomagnetism and Aeronomy, 2015, Vol. 55, No. 6, pp. 763–769, DOI: 10.1134/S001679321506016X.
  32. Zakharov V. I., Yasyukevich Yu. V., Titova M. A., Effect of magnetic storms and substorms on GPS slips at high latitudes, Cosmic Research, 2016, Vol. 54, No. 1, pp. 20–30, DOI: 10.1134/S0010952516010147.
  33. Zhukov A. V., Sidorov D. N., Foley A. M., Random forest based approach for concept drift handling, Communications in Computer and Information Science, 2017, Vol. 661, pp. 69–77, DOI: 10.1007/978-3-319-52920-2_7.
  34. Zhukov A., Sidorov D., Mylnikova A., Yasyukevich Yu., Machine learning methodology for ionosphere total electron content nowcasting, Intern. J. Artificial Intelligence, 2018, Vol. 16, No. 1, pp. 144–157.
  35. Zolesi B., Cander L., Ionospheric prediction and forecasting, Springer Geophysics, 2014, 240 p., DOl: 10.1007/978-3-642-38430-1_1.
  36. Zolesi B., Cander L. R., Franceschi G. D., Simplified ionospheric regional model for telecommunication applications, Radio Sci., 1993, Vol. 28, No. 4, pp. 603–612, DOI: 10.1029/93RS00276.
  37. Zolesi B., Belehaki A., Tsagouri I., Cander L. R., Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Sci., 2004, Vol. 39, No. 2, RS2011, DOI: 10.1029/2003RS002936.