ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 209-216

A method for determining types of weather fronts based on cloud classification results from MODIS satellite data

A.V. Skorokhodov 1 , V.G. Astafurov 1, 2 
1 V.E. Zuev Institute of Atmospheric Optics SB RAS, Tomsk, Russia
2 Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Accepted: 11.04.2018
DOI: 10.21046/2070-7401-2018-15-3-209-216
A method for determining types of weather fronts based on results of cloud classification by radiometer MODIS imagery in the visible region of the spectrum and thematic data processing is proposed. This approach is based on the fact that structures of the frontal cloud macroscale systems are heterogeneous and depend on the mesoscale processes occurring in it. Five types of weather fronts are considered: warm, cold of 1st and 2nd kind, warm and cold occlusion. The mechanisms of their formation are observed and at the same time the environmental conditions are described. The typical sequences of cloud types observed from space are given for different weather fronts. The step description of the technique for analyzing the cloud field characteristics and atmospheric conditions is presented. Cloud classification is performed by an algorithm based on the usage of a probabilistic neural network, a texture analysis and physical parameters of clouds. The results of determining the types of weather fronts over the territory of Western Siberia and Kazakhstan based on MODIS satellite data obtained during the period from 2016 till 2017 are discussed. The authors suggest that the main reason of false interpretation of observed episodes of unformed occlusion is the displacement of the fields of the most probable deposition of abundant precipitation into the transiting area of one of connecting fronts.
Keywords: weather front, cloudiness, image processing, satellite data, cloud parameters
Full text

References:

  1. Astafurov V. G., Skorokhodov A. V., Statisticheskaya model’ fizicheskikh parametrov oblachnosti na osnove tematicheskikh produktov MODIS (Statistical model of the cloud physical parameters based on MODIS thematic data), Issledovanie Zemli iz kosmosa, 2017, No. 5, pp. 66–81.
  2. Astafurov V. G., Kur’yanovich K. V., Skorokhodov A. V., Metody avtomaticheskoi klassifikatsii oblachnosti po sputnikovym snimkam MODIS (Methods for automatic cloud classification from MODIS data), Issledovanie Zemli iz kosmosa, 2016, No. 4, pp. 35–45.
  3. Bespalov D. P., Devyatkin A. M., Dovgalyuk Yu. A., Kondratyuk V. I., Kuleshov Yu. V., Svetlova T. P., Suvorov S. S., Timofeev V. I., Atlas oblakov (Cloud Atlas), Saint Petersburg: D’ART, 2011, 248 p.
  4. Volkova E. V., Otsenki parametrov oblachnogo pokrova i osadkov po dannym radiometra MSU-MR polyarno-orbital’nogo meteosputnika “Meteor-M” No. 2 dlya Evropeiskoi territorii Rossii (Detection and assessment of cloud cover and precipitation parameters using data from MSU-MR radiometer of the polarorbiting Meteor-M No. 2 for the European territory of Russia), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 9–18.
  5. German M. A., Kosmicheskie metody issledovaniya v meteorologii (Space research methods in meteorology), Leningrad: Gidrometeoizdat, 1985, 352 p.
  6. Gonsales R., Vuds R., Tsifrovaya obrabotka izobrazhenii (Digital image processing), Moscow: Tekhnosfera, 2005, 1072 p.
  7. Dashko N. A., Kurs lektsii po sinopticheskoi meteorologii (Lectures on synoptic meteorology), Vladivostok: DVGU, 2005, 523 p.
  8. Koloskov B. P., Korneev V. P., Shchukin G. G., Metody i sredstva modifikatsii oblakov, osadkov i tumanov (Methods and tools for the modification of clouds, precipitation and fogs), Saint Petersburg: RGGMU, 2012, 342 p.
  9. Pozdnyakova V. A., Prakticheskaya aviatsionnaya meteorologiya: uchebnoe posobie (Practical aviation meteorology: a tutorial), Ekaterinburg: UTC GA, 2010, 113 p.
  10. Skorokhodov A. V., Aksenov S. V., Aksenov A. V., Laikom D. N., Ispol’zovanie razlichnykh vychislitel’nykh sistem dlya resheniya zadachi avtomaticheskoi klassifikatsii oblachnosti po sputnikovym dannym MODIS na osnove veroyatnostnoi neironnoi seti (Using different computing systems to solve the automatic cloud classification problem on MODIS satallite data by probabilistic neural network), Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2016, Vol. 327, No. 1, pp. 30–39.
  11. Shakina N. P., Lektsii po dinamicheskoi meteorologii (Lectures on dynamic meteorology), Moscow: TRIADA LTD, 2013, 160 p.
  12. Shakina N. P., Skriptunova A. R., Ivanova A. R., Obʺektivnyi analiz atmosfernykh frontov i otsenka ego effektivnosti (Objective analysis of atmospheric fronts and evaluation of its effectiveness), Meteorologiya i gidrologiya, 2000, No. 7, pp. 5–16.
  13. Clarke L., Renard R. L., The US Navy numerical frontal analysis scheme: further development and limited evaluation, J. Appl. Meteorol., 1966, Vol. 5, pp. 764–777.