ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa


Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 252-260

Atmospheric moisture content variability from GPS-GLONASS data near the Kazan city

O.G. Khutorova 1 , V.E. Khutorov 1 , V.V. Dementiev 1 , A.S. Blizorukov 1 , G.E. Korchagin 1 
1 Kazan Federal University, Kazan, Russia
Accepted: 17.05.2018
DOI: 10.21046/2070-7401-2018-15-3-252-260
Using the GPS-GLONASS signals, the characteristics of time series of the integrated water vapor in the Kazan city area were determined. The annual amplitude of integrated water vapor is 10.2 mm of precipitated water. The main contribution, up to 63 % to the integrated water vapor variations dispersion, is provided by seasonal variations; mesoscale processes provide about 7 %, synoptic processes — 22 %, the linear trend ― less than 1 %. Wavelet analysis of the integrated water vapor series for 2009–2015 showed, that the intensity of synoptic and mesoscale variations for all the investigated parameters is modulated by the annual variation harmonics, with the maximum of the variability observed in the summer period. The interannual variability is found both in synoptic and mesoscale variations of the integrated moisture content.
Keywords: GPS, Integrated water vapor
Full text


  1. Zuravleva T. B., Firsov K. M., Ob izmenchivosti radiatsionnykh kharakteristik pri variatsiyakh vodyanogo para v atmosfere v polose 940 nm: rezul’taty chislennogo modelirovaniya (On the variability of radiation characteristics in the variation of water vapor in the atmosphere in the 940 nm band: the results of numerical simulation), Optika atmosfery i okeana, 2005, Vol. 18, No. 9, pp. 777–784.
  2. Kalinnikov V. V., Khutorova O. G., Teptin G. M., Determination of troposphere characteristics using signals of satellite navigation systems, Izvestiya. Atmospheric and Oceanic Physics, 2012, Vol. 48, No. 6, pp. 631–638.
  3. Nizameev A. R., Teptin G. M., Analysis of retrieval of the vertical refractive-index profile in the troposphere using the signals from the global navigation satellite systems, Radiophysics and Quantum Electronics, 2013, Vol. 56, No. 6, pp. 371–378.
  4. Khutorova O. G., Teptin G. M., An investigation of mesoscale wave processes in the surface layer using synchronous measurements of atmospheric parameters and admixtures, Izvestiya, atmospheric and oceanic physics, 2009, Vol. 45, No. 5, pp. 549–556.
  5. Khutorova O. G., Kalinnikov V. V., Kurbangaliev T. R., Variations in the atmospheric integrated water vapor from phase measurements made with receivers of satellite navigation systems, Atmospheric and Oceanic Optics, 2012, Vol. 25, No. 6, pp. 429–433.
  6. Bevis M., Businger S., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 1992, Vol. 97, No. D14, pp. 15787–15801.
  7. Boniface K., Ducrocq V., Jaubert B. G., Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting, Ann. Geophys., 2009, Vol. 27, pp. 2739–2753.
  8. Faccani C., Ferretti R., Impact of a high density GPS network on the operational forecast, Advances in Geosciences, 2005, Vol. 2, pp. 73–79.
  9. Glowacki J., Penna N. T., Validation of GPS based estimates of integrated water vapour for the Australian region and identification of diurnal variability, Aust. Meteorol. Mag., 2006, Vol. 55, p. 131.
  10. Guochang X., GPS. Theory, Algorithms and Applications, Berlin: Springer, 2007, 340 p.
  11. Guoping L., Dingfa H., Biquan L., Experiment on Driving Precipitable Water Vapor from Ground-based GPS Network in Chengdu Plain, Geo-spatial Information Science, 2007, Vol. 10, pp. 181–185.
  12. Jakobson E., Ohvril H., Elgered G., Diurnal Variability of Precipitable Water in the Baltic Region, Impact on the Transmittance of the Direct Solar Radiatio, Boreal Env. Res., 2009, Vol. 14, pp. 45–55.
  13. Khutorov V. E., Teptin G. M., Khutorova O. G., Zhuravlev A. A., Variability of the Tropospheric-Delay Temporal Structure Function of Radio Signals from the Global Navigation Satellite Systems Versus Tropospheric Surface Layer Parameters, Radiophysics and Quantum Electronics, 2016, Vol. 59, No. 5, pp. 1–9.
  14. Khutorova O. G., Teptin G. M., Vasil’ev A. A., Khutorov V. E., Shlychkov A. P., Passive sounding of the radiowaves refraction index structure in the troposphere by the set of satellite navigation system receivers in Kazan city, Radiophysics and Quantum Electronics, 2011, Vol. 54, No. 1, pp. 1–7.
  15. Khutorova O. G., Teptin G. M., Khutorov V. E., Kalinnikov V. V., Kurbangaliev T. R., Variability of GPS Derived Zenith Tropospheric Delay and Some Result of its Assimilation into Numeric Atmosphere Model, Proc. Progress in Electromagnetics Research Symposium (PIERS) , 2012, pp. 940–943.
  16. Khutorova O. G., Teptin G. M., Khutorov V. E., Dementyev V. V., Zhikh S. S., Krasnov V. I., Automatic complex for modeling and forecasting atmospheric processes, Proc. SPIE, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, 2015, Vol. 9680, pp. G1–G4.
  17. Morland J., Collaud Coen M., Hocke K., Tropospheric water vapour above Switzerland over the last 12 years, Atmos. Chem. Phys., 2009, Vol. 9, pp. 5975–5988.
  18. Ning T., Haas R., Elgered G., Willn U., Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden, J. Geodesy, 2012, Vol. 7, No. 86, p. 565.
  19. Pacione R., Fionda E., Ferrara R., Comparison of Atmospheric Parameters Derived from GPS, VLBI and a Ground-based Microwave Radiometer in Italy, Physics and Chemistry of the Earth, 2002, Vol. 27, pp. 309–316.
  20. Raju S., Saha K., Bijoy V. T., Measurement of Integrated Water Vapor over Bangalore Using Ground Based GPS Data, Proc. URSI General Assembly, 2005, New Delphi, pp. 20–24.
  21. Sapucci L., Machado L., Monico J., Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region, J. Atmos. Ocean. Tech., 2007, Vol. 24, pp. 1880–1894.
  22. Shuanggen J., Li Z., Choa J., Integrated Water Vapor Field and Multiscale Variations over China from GPS Measurements, J. Appl. Meteorol. Climatol., 2000, Vol. 47, pp. 3008–3015.
  23. Ware R. H., Fulker D. W., Stein S., Real-time national GPS networks for atmospheric sensing, J. Atmospheric and Solar-Terrestrial Physics, 2001, Vol. 63, No. 12, pp. 1315–1330.