ISSN 2070-7401 (Print), ISSN 2411-0280 (Online)
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa
CURRENT PROBLEMS IN REMOTE SENSING OF THE EARTH FROM SPACE

  

Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018, Vol. 15, No. 3, pp. 226-235

Aerosol and vortex activity in the atmosphere

N.I. Izhovkina 1 , S.N. Artekha 2 , N.S. Erokhin 2, 3 , L.A. Mikhailovskaya 2 
1 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Troitsk, Russia
2 Space Research Institute RAS, Moscow, Russia
3 Peoples' Friendship University of Russia, Moscow, Russia
Accepted: 19.03.2018
DOI: 10.21046/2070-7401-2018-15-3-226-235
The atmosphere of the Earth is constantly influenced by various heat and ionizing sources. The genesis of cyclones and anticyclones is associated with nonlinear interactions of hydrodynamic and magnetohydrodynamic structures. Plasma vortices are excited in the cellular spatial distributions of ionized aerosols. The influence of ionizing solar and galactic cosmic rays on the dynamics of plasma atmospheric vortices increases with the increase in atmospheric pollution. An important role of the aerosol impurity is manifested in the generation of plasma vortices and the accumulation of energy and mass in the atmosphere by vortices in the condensation of moisture. The paper shows that the vortex activity of the atmosphere, its jet flows and turbulence are associated with heterogeneous cellular distributions of atmospheric pollution. Part of the energy of powerful atmospheric vortex structures, such as tornadoes, cyclones and anticyclones, is generated by aerosol plasma vortices. And the interaction between the cyclone coming from the Atlantic and the anticyclone above the center of the European part of Russia depends on the stability of the anticyclone. The blocking of anticyclones is observed mainly in summer. Besides blocking anticyclones are formed over Siberia.
Keywords: aerosol plasma, the geomagnetic field, vortex activity of the atmosphere, jet streams, clear weather turbulence
Full text

References:

  1. Avdjushin S. I., Danilov A. D., Solntse, pogoda i klimat ― obzor (The sun, the weather and the climate ― overview), Geomagnetizm i aeronomiya, 2000, Vol. 40, No. 5, pp. 3–14.
  2. Bondur V. G., Pulinets S. A., Kim G. A., O roli variatsii galakticheskikh kosmicheskikh luchei v tropicheskom tsiklogeneze na primere uragana Katrina (On the role of variations of galactic cosmic rays in tropical cyclogenesis by the example of Hurricane Katrina), DAN, 2008, Vol. 422, pp. 244–249.
  3. Ivanov K. G., Kharshiladze A. F., Dinamika solnechnoi aktivnosti i anomal’noi pogody leta 2010 g. 1. Sektornoe stanovlenie i razrushenie struktury antitsiklona (Dynamics of solar activity and anomalous weather in the summer of 2010. 1. Sectoral formation and destruction of the structure of the anticyclone), Geomagnetizm i aeronomiya, 2011, Vol. 51, No. 4, pp. 450–455.
  4. Izhovkina N. I., Plazmennye vikhri v ionosfere i atmosfere (Plasma vortices in the ionosphere and atmosphere), Geomagnetizm i aeronomiya, 2014, Vol. 54, No. 6, pp. 817–828.
  5. Izhovkina N. I., Erokhin N. S., Mikhailovskaya L. A., Artekha S. N., Osobennosti vzaimodeistviya plazmennykh vikhrei v atmosfere i ionosfere (Features of interaction of plasma vortices in the atmosphere and ionosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2015, Vol. 12, No. 4, pp. 106–116.
  6. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Spiral’nye tokovye struktury v aerozol’noi atmosfernoi plazme (Spiral flow structures in the aerosol atmospheric plasma), Inzhenernaya fizika, 2016, No. 7, pp. 57–68.
  7. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Vliyanie kosmicheskogo izlucheniya na generatsiyu vikhrevykh struktur v atmosfere (Effect of cosmic radiation on the generation of atmospheric vortex structures), Inzhenernaya fizika, 2017, No. 5, pp. 59–69.
  8. Luchkov B., Uragany ― vechnaya problema? (Hurricanes ― an eternal problem?), Nauka i zhizn’, 2006, No. 3, pp. 58–64.
  9. Mikhailovskaya L. A., Erokhin N. S., Krasnova I. A., Artekha S. N., Strukturnye kharakteristiki elektricheskoi turbulentnosti pri vertikal’nom profile elektricheskogo polya s sil’nym vspleskom (Structural characteristics of electric turbulence for a vertical electric field profile with a strong splash), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2014, Vol. 11, No. 2, pp. 111–120.
  10. Nezlin M. V., Chernikov G. P., Analogiya dreifovykh vikhrei v plazme i geofizicheskoi gidrodinamike (Analogy of drift vortices in plasmas and geophysical hydrodynamics), Fizika plazmy, 1995, Vol. 21, No. 11. pp. 975–999.
  11. Sinkevich O. A., Maslov S. A., Gusein-zade N. G., Elektricheskie razryady i ikh rol’ v generatsii vikhrei (Role of electric discharges in the generation of atmospheric vortices), Fizika plazmy, 2017, Vol. 43, No. 2, pp. 203–226.
  12. Suslov A. I., Erokhin N. S., Mikhailovskaya L. A., Artekha S. N., Gusev A. A., Modelirovanie prokhozhdeniya krupnomasshtabnykh vnutrennikh gravitatsionnykh voln iz troposfery v ionosferu (Modeling the passage of large-scale internal gravitational waves from the troposphere to the ionosphere), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, Vol. 14, No. 5, pp. 19–25.
  13. Trefilova A. V., Artamonova V. S., Kuderina T. M., Gubanova D. P., Davydova K. L., Iordanskii M. A., Grechkov E. I., Minashkin V. M., Khimicheskii sostav i mikrofizicheskie kharakteristiki aerozolya g. Moskvy i Podmoskov’ya v iyune 2009 g. i na pike pozharov 2010 g. (Chemical composition and microphysical characteristics of aerosol in Moscow and Moscow region in June 2009 and at the peak of fires in 2010), Geofizicheskie protsessy i biosfera, 2012, Vol. 11, No. 4, pp. 65–82.
  14. Artekha S. N., Belyan A. V., On the role of electromagnetic phenomena in some atmospheric processes, Nonlinear Processes in Geophysics, 2013, Vol. 20, pp. 293–304.
  15. Artekha S. N., Belyan A. V., New physical mechanism for lightning, Intern. J. Theoretical Physics, 2018, Vol. 57, No. 2, pp. 388–405.
  16. Fierro A. O., Shao X.-M., Hamlin T., Reisner J. M., Harlin J., Evolution of eyewall convective events as indicated by intracloud and cloud-to-ground lightning activity during the rapid intensification of hurricanes Rita and Katrina, Month. Weather Rev., 2011, Vol. 139(5), pp. 1492–1504.
  17. Izhovkina N. I., Artekha S. N., Erokhin N. S., Mikhailovskaya L. A., Interaction of atmospheric plasma vortices, Pure and Applied Geophysics, 2016, Vol. 173, No. 8, pp. 2945–2957.
  18. Leary L. A., Ritchie E. A., Lightning flash rates as an indicator of tropical cyclone genesis in the eastern north pacific, Month. Weather Rev., 2009, Vol. 137(10), pp. 3456–3470.
  19. Price C., Asfur M., Yair Yo., Maximum hurricane intensity preceded by increase in lightning frequency, Nature Geosci., 2009, Vol. 2(5), pp. 329–332.